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ABSTRACT

Design sensitivity analysis and optimization of built-up structures
are formulated, analyzed, and solved numerically. A variational
approach is used to incorporate both finite dimensional and distributed
state and design variables in the same energy equation. Kinematic and
natural boundary conditions at the interfaces between structural
components of built—up structures are defined. Variation of the energy
equation with the material derivative idea from continuum mechanics and
introduction of an adjoint variational equation yleld design sensitivity
vectors and functions with respect to conventional and shape design
variables. A unified method of shape design sensitivity analysis for
static and eigenvalue problems, to complement the finite element method
of structural analysis is developed. Standard shape design sensitivity
forms are derived for structural components and may be applied to
various kinds of built-up structures to obtain design sensitivity forms
at the interfaces between structural components of built-up
structures. This method provides potential for shape optimization of
complex built-up structures. Numerical considerations for design
sensitivity analysis and optimization are investigated. A basic study
is carried out to check numerical accuracy of calculations by the finite
element method. A characteristic function is introduced to treat stress
constraints in finite dimensional shape optimization. Special attention

is given to calculating shape design sensitivities for stress
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constraints on elements that are adjacent to interfaces. Results of
design sensitivity analysis and the related numerical considerations are
used with a linearization method for iterative optimal design. A truss-

beam-plate built-up structure is presented to illustrate use of the

method.
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CHAPTER 1

INTRODUCTION

1.1 Purpose, Motivation, and Scope

The research reported herein deals with variational methods of
design sensitivity analysis and finite element numerical methods for
iterative optimization of built-up structures, taking advantage of
distributed parameter structural theory.

During the past decade matrix and finite element methods of
structural mechanics have been used with nonlinear programming methods
of optimization to create numerical methods for optimizing structures
{1,2]. Recently, developments in distributed parameter structural
optimization show rather clearly [3] that the unified variational theory
of structural boundary-value problems can be used in design sensitivity
analysis and optimization. Rigorous and practically computable results
for structural components (beams, plates, plane elastic solids, and
three dimensional elastic solids) have been demonstrated and used to
solve component optimization problems [3].

The dichotomy between matrix and distributed parameter approaches
to structure optimization is particularly evident when one considers
complex built-up structures that consist of interconnected truss, beam,
plate, shell, and other components. Virtually, all aircraft, vehicles,
machines, and other mechanical structures are made up of combinations of

a variety of such structural components. The matrix/finite element



approach is extendable to treat such classes of structures, which has
been done to a limited degree in the literature. No attempt, however,
has been made to develop a distributed parameter theory of structural
optimization for built—-up structures.

The principal objective of this research is to extend the theory of
single component, distributed parameter design-shape optimization to
treat bullt-up structures that are composed of interconnected
components. Attention is restricted in this research to linear
structural mechanics. The variational formulation, in the case of
individual structural components, can be rigorously related to a virtual
work or energy principle in mechanics. This result allows direct
extension of energy ideas used in matrix methods to a distributed
parameter formulation of built-up structures.

The approach taken in this research begins with an energy
characterization of structural performance, namely Hamilton's
Principle. Hamilton's Principle results in a variational formulation
of the governing structural equations that is employed for design
;ensitivity analysis. Strong ellipticity properties of energy bilinear
forms have been proved for individual structural components [4],
yilelding existence and uniqueness results fbr the associated variational
equations and forming the foundation for a rigorous proof of
differentiability of structural response with respect to design
variables and shape. These mathematical properties are presumed to be

satisfied, justifying use of direct variational analysis techniques that



were rigorously developed in individual structural components [5) for
design sensitivity analysis of built-up structures.

The second principal objective of this research is to develop a
unified shape design sensitivity analysis method to demonstrate
substantial theoretical and computational advantages over previously
used shape desién sensitivity analysis methods for structural
components. These new results are used in applications for optimal
design of various kinds of built-up structures. The shape design
sensitivity method developed follows directly from energy methods of
solid mechanics and the material derivative idea of continuum
mechanics. The result 1s a theory that can be stated almost completely
in terms of concepts of mechanics, not requiring a detailed knowledge of
functional analysis, even though such theory provides rigorous
Justification of these methods.

The final objective of this research is finite element
implementation of the formulation developed. Finite element theory for
built-up structures and variational equation theory [6] guarantee
validity of the resulting finite element models.

The next section of this chapter presents a literature survey of
topics and problems related to built-up structural optimization.
Chapter 2 presents general distributed parameter theory for design
sensitivity analysis of built-up structures.

With the variational equations and the material derivative idea
from continuum mechanics for shape variations, static and eigenvalue

design sensitivity analysis by the adjoint variable method on a variable



domain are carried out in Chapter 2. Chapter 3 presents a unified
method for shape design sensitivity analysis for built-up structures,
based on the formulation derived in Chapter 2 and taking advantage of
direct application of design sensitivity fbrms to the various kinds of
built-up structures. The interface conditions between structural
components and the shape design sensitivity forms for basic built-up
structural models involving beams, plates, and plane elastic solids are
summarized.

Numerical considerations related to design sensitivity amalysis and
optimization are discussed in Chapter 4. In Chapter 5, a truss-—beam-
plate built-up structure 1s used to illustrate the numerical feasibility
of design sensitivity analysis and optimization, through iterative
optimization of a complex built-up structure. Finally, Chapter 6

presents a discussion and conclusions of the present study.

1.2 Literature Survey

One of the common means of achieving a high strength-to-weight
ratio is to combine structural components as built-up structures. A
substantial literature has developed on optimization of built-up
structures.

One of the first treatments of built-up structure optimization was
considered by Catchpole [7], who developed a method enabling rapid
determination of the optimum cross-sectional dimensions of a compression
surface having an unflanged integral stiffener. Symonds [8] presented
the minimum weight design of a simply supported, transversely stiffened

plate that is loaded in shear.



Problems of optimum design of stiffened cylinders or cylindrical
shells, under either compression, lateral pressure, or combined axial
compression and lateral pressure, with various types of stiffeners were
considered by Nickel and Crawford [9], Crawford and Burmns [10], Cohen
(11], Burns and Almroth [12], Gerard and Papirno [13], Burns and Skogh
[14], Burns [15-18], Gerard [19], Lakshmikantham and Becker [20], Block
[21], and Shideler et al. [22].

~In many of the earlier papers [9-22], optimization was achieved by
parametric studies. This 18 a classical design method that is integral
to the weight/strength and structural index concepts of minimum weight
structural design [23]. Afterwards, optimal design has been achieved
by the mathematical programming approach that was pioneered by Schmit
[24]. For this approach, many algorithms are available that are
guaranteed (theoretically) to produce at least a local optimum design.

Structural synthesis of stiffened cylinders or cylindrical shells
was considered in several papers [25-33]. Kicher [25] treated the
problem by using a constrained gradient method. Schmit et al.[26], and
Morrow and Schmit [27] applied a Fiaco-McCormick type penalty function
formulation to transform the basic inequality constrained minimization
problem into a sequency of unconstrained minimization problems. Pappas
and Amba-Rao [28] used a direct search algoritm with an interior-
exterior penalty function formulation. Thornton [29] used the exterior
penalty function method with least-square approximation. Jones and

Hague [30] applied a different optimization search technique and



extended the work of Ref. 27. Pappas and Allentuch [31-33] utilized a
direct search design algorithm and the golden search.

Many other papers considered minimum weight design of built-up
structures, under a variety of loading conditions, constraints,
configurations, and with a variety of optimization techniques [34-61].

Stroud and Sykes [34) showed the effect of slight meridional
curvature. Lakshmikantham and Gerard [35) showed the effects of ring
stiffeners of the isotropic skin. Kicher and Chao [36] treated the
problem of stiffened fiber composite cylinders with the penalty function
technique of Fiaco and McCormick. Weight optimization of reinforced
spherical shells under external pressure was examined by Manevich and
Kaganov [37]. An eccentrically stiffened wide panel under compression
was investigated by Tvergaard [38].

An indirect, trial and error design procedure for axially
compressed cylinders has been proposed by Rehfield [39]. Pappas and
Allentuch [40) presented a procedure for circular, cylindrical, 'T'
frame (ring) reinforced, submersible shells. Simitses and Aswani [41]
found optimum stiffened cylinders that can safely carry a given
hydrostatic pressure. Pappas and Allentuch [42] considered the pressure
hull optimization using a general instability equation. Simitses and
Ungbhakorn [43,44] have produced designs of axially compressed cylinders
with various stiffeners. Kunoo and Yang [45,46] carried out design of
cylindrical shells with different stiffeners, subjected to uniform axial
compressive or bending load, by the method of steepest descent. This

problem was also considered by Pappas and Moradi [47], by direct



optimization without use of approximation or limitations in the number
of stiffener sizes.

Richards [48] considered optimum design of stiffened webs with
supplementary skin stabilization. Sgreide et al. [49] studied the
design of stiffened plates in an ultimate limit state. Libai [50]
presented design of a square plate with a single, eccentric, blade-type
stiffener that is subjected to compressive edge loads.

Majumder and Thornton [51] presented a method to produce efficient
plecewise uniform stiffened shells of revolution. Simitses and Giri
[52] presented a design procedure of stiffened circular cylindrical
shell geometries, subjected to pure torsion. Later they extended the
design problem, combined with axial compression, with and without
lateral pressure [53]. Design of stiffened cylindrical panels was
considered by Toakley and Williams [54] for compression loading and by
Simitses and Sheinman [55] for combined load.

Bronowicki et al.[56) presented the design of a shell with T-ring
stiffeners subjected to a vibration constraint. Patnaik and Sankaran
[57] treated stiffened cylindrical panels with constraints on natural
frequencies, in the presence of initial stresses, using unconstrained
minimization techniques and a finite difference scheme for design
sensitivity analysis. Dobbs and Nelson [58] presented a method with
fracture constraints that is capable of determining a fail-safe design,
which 18 a logical extension of present structural optimization methods
which include stress, displacement, buckling, frequency, and seroelastic

flutter constraints. Rao and Reddy [59] considered design optimization



of axially loaded, stiffened cylindrical shells for minimum mass with
natural frequency, local and overall buckling strengths and direct
stress constraints.

Simitses and Sheinman [60] solved the problem of optimizing
stiffened, thin, circular cylindrical shells under uniform axial
compression against general instability, in the presence of initial
geometric imperfection. Patel and Patel [61] made an attempt to obtain
a design of stiffened cylindrical shell under pure bending load, using a
penalty function technique and complex method of Box.

However, all of these problems were solved by a matrix/finite
element approach. The main emphasis of this research is on development
of a distributed parameter structural theory for design sen;iciviCy
analysis and optimization, a unified method for shape design sensitivity
analysis, and a method for finite element implementation of formulations

achieved for numerical feasibility.



CHAPTER 2

DESIGN SENSITIVITY ANALYSIS OF BUILT-UP STRUCTURES,
BASED ON DISTRIBUTED PARAMETER THEORY

2.1 Introduction

Distributed parameter structural theory [3,5] is applied here for
design sensitivity analysis of built-up structures, for both static and
eigenvalue problems with design variable and shape variations.
Variational equations for structural components are obtained in Section
2.2 and a general variational formulation for built-up structures is
presented in Section 2.3, For shape variationm,
idea of continuum mechanics is introduced in Section 2.4. In Sections
2.5 and 2.6, static and eigenvalue design sensitivity analysis for both
design and shape variations, respectively, are presented, using the
variational/structural equations. The basic theory is originated from

Ref. 5, where the reader may find more technical and mathematical

developments.

2.2 Variational Equations of Structural Components

In order to be specific about properties of built-up structures, it
is helpful to formulate variational equations for several structural
components in a unified way, prior to delving into design sensitivity
analysis. Three basic problems are defined in this section and are used
in later sections. It is shown that the basic forms of all problems are

identical.
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2.2.1 Beam
Bending, torsion, axial deformation, and vibration of a beam are
considered. For bending, the boundary-value problem, in operator form,

is given as
Az = (Eszx)xx = f x €(0,8) (2.1)
vz(0) = vz(2) = 0 (2.2)

where E is Young's Modulus, I is moment of inertia of the beam cross
section, f € Cl[O,ll is distributed load, and Y is a boundary operator
that gives the projection of structural displacements and perhaps their

derivatives onto the exterior boundary.
For torsion, the differential equation for the angle of twist ©

per unit length of the beam is [62]
A0 = -GJo_ =T , x e (0,98 (2.3)
Y6(0) = Y6(2) =0 (2.4)

where G is shear modulus, J is torsion constant [63], and T is applied

torque.

For axial deformation, the boundary-value problem, in operator

form, is giveﬁ as
Az = ‘(EAzx)x -f . x € (0,%) (2.5)

vz(0) = yz(%) = 0 (2.6)
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where f « Cl[O,z] 1s axial load and A is cross-sectional area of the
beam.
For vibration, the formal operator eigenvalue problem for bending

is

Ay

i

(Ely ), = teAy = By , x e(0,2) (2.7)
yy(0) = yy(8) =0 (2.8)

where ¢ = w2, w is natural frequency and p is material density.

These boundary-value problems may be written in equivalent
variational fo:ms, essentially the principle of virtual work, by
multiplying Eqs. 2.1, 2.3, and 2.5 by arbitrary virtual displacements
that are consistent with the boundry conditions of Eqs. 2.2, 2.4, and
2.6, respectively, and integrating by parts to obtain the variational

equations

a(z,z) = fg Eszx;xxdx = fg fzdx = 2(z) (2.9)

for all z e Z = {z e H2(0,2):z satisfies kinematic boundary

conditions} for bending,

a(e,0) = fz

- - 2 _ -
o GJOxexdx TO |, = 2(0) (2.10)

for all 0e Z = {z € H1(0,2):z satisfies kinematic boundary conditions}
for torsion [64], and

a(z,z) = L; EAzx;xdx = fé fzdx = (z) (2.11)
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for all z € Z = {z HI(O,L): z satisfies kinematic boundary conditions}

for axial deformation.

Similarly, the variational form for the eigenvalue problem is

- 2 -— A - -
aly,y) = [ Ely_y _dx = [ oAyydx = zd(y,y) (2.12)

for ally €2 = {z e H2(0,£): z satisfies kinematic boundary
conditions}.

One can obtain the variational eigenvalue equations for torsion and
axial deformation. Here, Hi(ﬂ) represeﬁts a Sobolev space. For a
discussion of Sobolev spaces, the reader is referred to Refs. 5, 65, 66,
and 67. In beam stiffened built-up structures, the torsional stiffness
effect of beams is generally considered, making use of the terms

presented here.

2.2.2 Plate
Bending and vibration of a plate of variable thickness
h(x) > hy > 0 as shown in Fig. 2.1 are now considered. The operator

form of the boundary-value problem is
Az = f | ‘x e (2.13)
Yz=20 , x €T ' (2.14)
where the operator A is defined formally as

Az = [D(u)(zu+v222)]11 + [D(u)(222+vz + 2(1-v)[D(u)z

12112
(2.15)

11)]22
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where a subscript i denotes the operation 2
i
D(u) = Eh3/[12(1 - vz)], E 1s Young's modulus, v is Poisson's ratio,

and y is a boundary operator.

The variational equation for the plate is [5]
a(z,2) = [fo D(Wlz) 2, 1+ vapyz)) + 2,7, + V2)) 22
+ 2(1-v)z ,z,,]de = ffg fzdQ = (z) (2.16)

for all z €7 = {2 EEHZ(Q): z satisfies kinematic boundary conditions}
for static response. If the thickness h 1is constant, then the operator

equation 1s simplified to

Az DVaz = f , X €9 (2.17)

YZ=0, x T (2.18)

where f e Cl(a) and Q is the closure of & [66].
For vibration, the formal operator form of the eigenvalue problem

is simplified to

Ay DVAY = rohy = ¢By y Xe Q (2.19)

Yy=0 Py X € I‘ (2-20)

where 7 = wz, w 18 natural frequency, and p is material density.

The variational equations are [5]

a(z,2) = o[ (VP2)(VP2)da = /I, f2da = x3) (2.21)
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for all z € Z, for static response, and

a(y,y) = ¢ff, ehyydQ = td(y,y) (2.22)
for all ; e Z , for the eigenvalue problem.

2.2.3 Linear Elasticity
The three dimensional linear elasticity problem for a body of
arbitrary shape, shown in Fig. 2.2, is considered. The strain tensor is

defined as

eij(z) =-§ (z; + zi ) L, 1,3=1,2,3 , xeQ | (2.23)

where z = [zl, zz, z3]T 1s displacement. The stress-strain relation
(generalized Hook's law) is given as [68]
1] 3 1ik2 k2
o(z) = ] D¢ (z) , 1,j,k,8=1,2,3 , xeQ (2.24)
k, =1
where D is the elastic modulus tensor, satisfying Dijkz = Djikz

13k _ 198k

and D » 1,3,k,4 = 1,2,3. The equilibrium equations are [68]

3 |
-3 oij(z) =F ,1=1,23 xeq (2.25)
j=1

with boundary conditions

=0 , 1=1,23 ,xel® (2.26)

i 3
™ (2) = )) oij(z)nj = Ti, 1=1,2,3, x = F2 (2.27)
j=1

and the boundary segment Pl is traction free, where nj is the jth
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Figure 2.1 Clamped Plate of Variable Thickness h(x)

Figure 2.2 Three Dimensional Elastic Solid
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1 2 _3.T 1,-.,3
component of the outward unit normal, F = [F ,F",F°] e [C (D], and
2.3 1 3
r= [v,1%,117 e (c'(m13.
The variational equation for this problem is [5]

3
a(z,2) = [[[o 1] o et @)1aa
i,j=1

3 i-1 3 i-1 -
= [[f L I Pz laa+ [[ [ JT°Z2°1dr = «2) (2.28)
a i=1 r i=1

which must hold for all z e Z, where Z is the space of kinematically

admissible displacements; i.e.,

i

z=(ze m(d>: 2 =0,1=1,23, xe<1% (2.29)

For plane elasticity problems in which either all components of
stress in the x3-d1rection are zero or all components of strain in the
x3-d1rection are zero, Eq. 2.28 remains valid, with limits of summation
running from ! to 2 and an appropriate modification of the generalized

Hook's law of Eq. 2.24.

2.3 Variational Equations of Built-Up Structures

Consider a general structure that is made up of a collection of
structural components, for which each component, except truss elements,
occupies a domain Qi with boundary Pi, i=1,2,..,r, and the components
are interconnected by kinematic constraints at their boundaries. That
is, structural components are interfaced by joints that connect them to
adjacent components and constrain admissible displacement fields at the

interfaces. Displacements in structural components are said to be
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kinematically admissible if they satisfy kinematic constraints at the
joints. The definition of kinematic constraints at each interface
depends on the nature of the components connected by the joint. The
axial displacement of the end of a truss component, for example, must be
equal to the projection of the displacement of the point of attachment
in an adjacent component, along the axis of the truss component. In the
case of a beam component, kinematic boundary conditions at the ends of
the element may involve both displacement and slope. In the case of
plate components, kinematic interface conditions may likewise involve
both displacement and slope. In the case of an elastic component of
general shape, the kinematic interface conditions involve only
displacement at the interface. This is the same set of boundary
conditions imposed in the finite element model, since the compatibility
condition in finite element analysis means that displacements within
elements and across element boundaries are continuous.

In an abstract setting, let z denote a composite vector of
displacement fields in the components that make up the built-up
structure ; i.e., 2z = [zl,zz,...,zr,q]T, where zi € [Hmi(ﬂi)]zi
represent displacements for beam, plate, or elastic components and
q e RK represents displacements of truss components. The space of
kinematically admissible displacement fields is defined as the set of
displacement fields that satisfy homogeneous boundary conditions between
the individual components and the ground reference frame and kinematic

interface conditions between components. Symbolically, this is
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Z={zeW:Yz=20 on T, Yiz = yjz on Pij} (2.30)

Lo Yook
where the product space W= | [H (Qi)] X R" is the space of
displacement fields that satis;y the required degree of smoothness, y is
a boundary operator (the trace operator [66]) giving the projection of
structural displacements and perhaps their derivatives onto the exterior
boundary T, and Yi and Yj are interface operators that project
displacement fields and perhaps their derivatives from within components

1 and j onto their common boundary PiJ. This space of functions 1is

called the space of kinematically admissible displacement fields.

2.3.1 Hamilton's Principle
In order to state a general form of Hamilton's Principle, it is
first necessary to define energy quantities associated with the
structure. First, let the strain energy of the structural system be

denoted by

U(z) %—au Q(z,z)

r
= %.[izl a, (zi,zi) + ab(q,Q)] (2.31)

where a 14 is the strain energy of each component i and ay is the
u ,f

strain energy of truss components. The design variable 1is

2,...ur,b]T, where ul 1s the design variable of component 1

u = [ul,u
and b is the design parameter vector of the trusses.
The dependence of the strain energy quadratic form on design

variable u and shape 9, which is to be parametrized later, of the
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system is indicated. It is presumed that the quadratic strain energy in
Eq. 2.31 is defined for all displacements in the space Z of
kinematically admissible displacements. The strain energy quadratic
form is defined as the sum of strain energies of the components that
make up the built-up structure, each involving a matrix or integral
quadratic form in its displacement field.

Next, define the kinetic energy of the system as

dzy _ 1, dzds
TG =7 Y, ofacvae
T i .1
-l dz dz . dq dq
2 L1 4y Grge) + 4] (2.32)
i=1 u™,Q
where 14 is the kinetic energy of compoment 1 and dy is the kinetic
u b

energy of the trusses.. Here, dz/dt denotes time derivatives of the
displacement z and the kinetic energy quadratic form depends on the
design variable of the structure. As in the case of strain energy,
kinetic energy is obtained by summing kinetic energies of each of the
structural components, each involving its own matrix quadratic form or
integral over the domain of the component. It is presumed that the
kinetic energy in Eq. 2.32 is well defined for ali kinematically
admissible displacement fields.

Finally, let the virtual work of all externally applied forces be

defined as

L(z)

zu,ﬂ(z)

T -1 _
2 L 1 (z7) + fb(q) (2.33)

i=]l u ,Qi
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where £ 1 gi is the virtual work of the applied forces for component 1
and £y :s’the virtual work of the applied forces for the trusses, with
time held constant, in undergoing a small virtual displacement z that
satisfies the kinematic admissibility conditions; i.e., for all z € Z.
The virtual work of applied forces acting on a built-up structure is
obtained by summing the virtual work of external forces applied to each
of the structural components. This virtual work functional is linear in
the virtual displacement z.

Since the displacement of a structural system will in general be
time dependent, each of the functionals defined in Egs. 2.31 through
2.33 is evaluated at a particular time t. In anticipation of employing
Hamilton's Principle, it is helpful to define the first variation of the
strain and kinetic energy quadratic forms of Eqs. 2.31 and 2.32. For

any kinematically admissible virtual displacement ;, one defines these

variations as

- _d__ - - -

U = a1 U(z + tz) = au,n(z,z) (2.34)
T=0

T2t TGt T30 0 dy,0lae ac) (2.35)

where the strain energy and kinetic energy symmetric bilinear forms
defined on the right sides of Eqs. 2.34 and 2.35 are obtained by
calculating the first variation of the strain and kinetic energy

quadratic forms of Eqs. 2.31 and 2.32.
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With this notation, one is now in a position to state a general
form of Hamilton's Principle that is suitable for design sensitivity
analysis of built-up structures. Following the classical literature
[69-71], the variational form of Hamilton's Principle requires that

€ )

[ W-Tdt = [ " L dt (2.36)

to to
for all times typ and t; and for all kinematically admissible virtual

displacements z that satisfy the additional conditions
z(to) = z(tl) =0 (2.37)

In terms of the virtual work linear form of Eq. 2.33 and the strain and

kinetic energy bilinear forms of Eqs. 2.34 and 2.35, one may write

Eq. 2.36 as
£ - dz dz t -
{ {au’g(z,z) - du’Q (K,E)}dt = tf lu’Q(z)dt (2.38)
0 0

for all kinematically admissible virtual displacements z that satisfy
Eq. 2.37.

This general formulation of Hamilton's Principle provides the
variational equations of structural dynamics. The foregoing formulation
directly specializes to the cases of static response and natural
vibration of the built-up structure. Using the theorem of minimum total
potential energy, one could similarly extend the variational formulation

for buckling of a built-up structure, which is not pursued here.
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2.3.2 The Principle of Virtual Work
Consider now the case of static response of a structure to load
that does not depend on time. 1In this case, time is suppressed

completely from the problem and Eq. 2.38 reduces to

au’g(z,;) =2 (z) (2.39)

»

for all ze Z, which may be viewed simply as a statement of the principle
of virtual work. Note that this equation generalizes the variational
formulation of boundary-value problems of individual structural
components. Note also that if the load linear form on the right of

Eq. 2.39 is continuous in the space Z and if the energy bilinear form on
the left side of Eq. 2.39 is strongly elliptic on Z, then by Lax-Milgram

theorem [66], Eq. 2.39 has a unique solution z € Z.

2.3.3 Free Vibration

Consider next the special case in which there are no externally
applied loads and in which one wishes to consider harmonic vibration of
the built-up structure. Harmonic motion of the entire built-up
structure is defined as a displacement field that can be written as the
product of a time independent mode function y€Z and a harmonic function
sinwt; i.e.,

z = ysinwt (2.40)
where y € Z.

Before substituting this harmonic displacement field into Eq. 2.38,

it is helpful to transform Eq. 2.38, using an integration by parts.



23

Since the kinetic energy bilinear form is linear 1in its individual

factors, one has

2
d - d"z dz dz
acdy, ol ?) = 4 (d 2:2) +d, o(GED) (2.41)

Integrating both sides of this equation from typ to t;, recalling

that z must satisfy Eq. 2.37, one has

‘1 a%z - dz dz
0=d o dt,z) t = [p {4, ( 2 2) +d, (59t (2.42)

0
One may now substitute for the second term in the integrand on the

right side of Eq. 2.42 into Eq. 2,38, with the load linéar form equal to

zero, to obtain

t

2
[} e, (2,2 + a (d L2 5t = o (2.43)
0o W T qe

for all z € Z,
One may substitute z from Eq. 2.40 and z in the form z = yE(t),
where ; i1s an arbitrary time independent displacement field in Z and

£(t) 1s an arbitrary function of time that vanishes at tj and t;, to

obtain
- 2 -, (1
{au’n(y,y) - w du’n(y,y)} fto sinwtf(t)dt = 0 (2.44)

for all ;e.z. Since the integral in Eq. 2.44 is not zero for all
functions f that vanish at to and ty» its coefficient must be zero.

Defining ¢ = wz, one has the variational eigenvalue equation

8,,07sy) = &dy (3,3 (2.45)
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for all ; € Z. Note that this is the form of the variational eigenvalue

problem for individual structural components.

2.4 Material Derivative for Shape Variation

Structural design problems are considered in which the shape of a
two or three dimensional structural element is to be optimized, subject
to constraints on natural frequency, displacement, and stress in the
structure. Since shape of the domain that a structural component
occuples is treated as the design variable, it 1s convenient to think of
the domain @ as a continuous medium and to utilize the material
derivative idea from continuum mechanics to find relationships between a

variation in shape and the resulting variation in functional

als that arice
in shape optimal design problems. In this section, the material
derivative is defined and basic material derivative formulas for
structural response functionals are presented.

Consider a domain Q in two or three dimensions, shown schematically
in Pig. 2.3. Suppose that only one parameter T defines the
transformation T, as shown in Fig. 2.3. Then, the mapping

T: x+ xT(x), x € Q, is given by

™
u

= T(x,1)
(2.46)

Lo
[0

2 T(Q,7)

where

T(x,T) = x + W(x) (2.47)



Figure 2.3 Variation of Domain

25
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Variations of the domain Q by the design velocity field V(x) are denoted
as Qt = T(Q,7) and the boundary of Qt is denoted as PT.
Suppose zT(xt) is a smooth classical solution of the formal

operator equation on the deformed domain Qt,

(2.48)

Then, the mapping zt(x + wW(x)) is defined on Q and zT(xT) in QI depends
on t in two ways. First, it is the solution of the boundary-value
problem on QT. Second, it is evaluated at a point X that moves

with 1. The pointwise material derivative (1f it exists) ar x e 9 {e

defined as

4 z (x + W(x)) - 2(x)
z(x) e zt(x+1V(x)) -0 = 1im p. (2.49)
170

If z, has a regular extension to a neighborhood UT of 61’ denoted

as Z.s then one has

2(x) = 2'(x) + Vz2lV(x) (2.50)

where

zT(x) - z(x)

z2'(x) = 1lim
0 T

is partial derivative.

Let zr(xt) be the solution of the following variational equation on

the deformed domain QT:
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a(z, ET) = IIQT c(zT,ET)dQ = zr(zr) (2.51)

for all ;t <z, where z.< Hm(QT) is the space of kinematically
admissible displacements and ¢(.,.) is a bilinear mapping that can be
obtained by integration of the formal operator equation by parts.
Then, z_ <Z_ CHm(QT).

One attractive feature of the partial derivative is that, with
smoothness assumptions, it commutes with derivatives with respect to x,
because they are derivatives with respect to independent variables

[5,72]; {i.e.,

3z '
03;;) =

2, 1=1,2,3 (2.52)
xy

Consider now a general functional that is defined as an integration

over Q_,
T
¥ = foT F (x )de_ (2.53)

where FT is a regular function defined on Qr' The material derivative

of Eq. 2.53 at Q is (5]

&
]

IIQ [F'(x) + div(F(x)V(x))]dQ (2.54)

Now, 1if Q is ck regular [5], one has

]
1]

[IE Gda + [ )V Tn)r (2.55)

It is shown in Ref. 5 that if a general domain functional V¥ has a

+
gradient at Q and Q has Ck 1 regularity, then one need consider only
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the normal component (VIn) of the velocity field on the boundary for
derivative calculations. Similarly, one can obtain the material
derivative calculations.

When one considers bullt-up structure shape optimization, the
boundary movement of one structural component causes movement of the
entire domain of an attached structural component at their interface.
Special interest is directed to the material derivative of a general
functional defined as an integration over a specific domain Q
(restricted to two-dimensional structures), where Q moves in the normal
direction to the plane (or line) on which § is defined. It is presumed
that the normal to the plane (or line) where this specific domain & is
defined is parallel to rectangular coordinate axes and the velocity

fleld ts V = [v¥,vY,v%]T at 5.

X
z

By the nature of the specific domain, one has V; = V" =0 on the
domain & that is on the y-z plane, Vi = VZ = 0 on the domain { that is
on the x-z plane and V: = V; = 0 on the domain § that is on the X-y
plane.

Consider now a general functional that is defined as an integration

over 5,
¥=[[ cde (2.56)
2

where G is a regular function defined on §. The material derivative

is [5]
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¥ = [f (6" + 6w + [ 6 n)dr (2.57)
3 ¥

where N denotes the direction of domain movement.

Comparinglthe material derivative formula of Eq. 2.57 with the
material derivative formula of Eq. 2.55, one can note that the second
term in the domain integral of Eq. 2.57 is added to Eq. 2.55, which is
regarded as the effect of domain movement normal to the plane (or line)

on which @ is defined.

2.5 Static Design Sensitivity Analysis

The variational method for design sensitivity analysis with respect
to both design variable and shape changes is now considered, using the
general variational formulation presented in Section 2.3, to obtain
expressions for design sensitivity of functionals with respect to
combined design variation. Differentiability of state with respect to
design and existence of the material derivative z are presumed and are
used in this section to derive an adjoint variable method for design
sensitivity analysis of quite general functionals. An adjoint problem
that is closely related to the original structural problem is obtained
and explicit formulas for structural response design sensitivit§ are

obtained.

2.5.1 Calculation of First Variations
Consider the variational form of the built-up structural equation

in Eq. 2.39, repeated here as

au’n(z,;) = 2u,9(;) (2.58)
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for all z € Z. The objective is to use this variational equation to
obtain a relationship between variations in design functions and shape
and the resulting variation in state of the system.

To simplify notation, consider the deformed domain due to a

velocity field V, written as

n

QTE {xTeR : xT=x+ ‘l’V(x), x € Q} (2.59)

Assuming that the energy bilinear form is differentiable with
respect to design functions and shape, the first variation with respect

to both shape and design functions gives [5]

la(z,2)]" = &), o(2,2) + &y ((2,2) + &, (2,2)
r ] ] r 1 ]
=[] a (zha) +a (1 + ] a . LGt3hy
1=1 &ul, gt Sb 121 ul vl
‘2' 1 -1
+ a (z7,27) (2.60)
i=1 ui,ﬂ}

where vi is the velocity field on ﬂi. Note here that the lengths of
trussés are treated as design variables. The prime notation here plays
the role of the first variation of the calculus of variations, with
respect to explicit dependence of the energy form au’ﬂ on design and
shape. This first variation is presumed to be linear in 6u. Hence it
is the Frechet derivative of au,Q vith respect to design and shape,
evaluated in the direction Su. This notation is chosen to display

clearly which variables are held fixed and which are varying in the

terms that arise.
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Similarly, one may take the first variation of the load linear form

to obtain
[2(2)]"' = 2$u,9(2) + 2;,V(z)
E ' "i T - E ’ —i
=[)2 (z7) + £.(q)] + 2 (z7) (2.61)
1=1 &l,gql 6b 1=1 ol vl

As 1in the case of the energy bilinear form, the variation of the load
linear form is also presumed to be linear in Su.

With this notation, and denoting the solution of Eq. 2.58 on the
deformed domain and varied design as z(1), one may differentiate both
sides of Eq. 2.58 with respect to t and evaluate the result at Tt = 0,

using the notation of Eqs. 2.60 and 2.61, to obtain

a o(£,2) +al  (z,2) +a' (z,2) = 2. (2)+ 2 (2) (2.62)
u,Q u,V u,

Su, Q 6u, Q \')

for all ;<EZ, where z is the sum of the first variations due to design
and shape change and Z is the space of kinematically admissible
displacements. Note that this equation is valid for arbitrary virtual
displacements that are consistent with the constraints, so 1if the
energy bilinear form is strongly elliptic, Eq. 2.62 uniquely
determines z, once Su and V are specified. Explicit solution of this
equation for z as a function of &u and V, however, is not generally
possible.

Consider a general functional that defines performance of a built-

up structure, of the form
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Y=y ’Q(z)

i

he—n ¢

:rfi gi(zi’vzi’z

ji,ui)dﬁ + h(b,q) (2.63)
1@

where the function g 1s continuously differentiable with respect to its
arguments, and zjk = Bzz/axjaxk, j,k=1-3, denotes the second derivative
of z. Note that in some structural components, arguments of the
function g can be only first derivatives of z, in which the second
derivative of z in Eq. 2.63 is presumed to be disregarded.

Taking the total variation of this functional for each component of

a structure, one has

L
d
¥ i wu+r6u,9 (z(1))
T =0
r n
=1l gt ve mte T O
i=l1 Q z Vz j,k=nl zj

T T
- gi (Vzi Vi) - gi V(Vzi Vi)
i Vzi

n T

- gii(vzi vh - gii(z;Vm) _ gt iV(z;]ViN)
k=n z J z Vz
j) 1 jk
2
- z gii (ziViN).k + g;ViN + gii 6u1]d9
k=n z N J u
j’ 1 jk
r T '
+7 f,gtovtalyar e Mg 4 g (2.64)
1= I,1 ob 9q

where
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T
L
ii = zi + Vzi Vi + z;ViN (2.65)
and n1 is the outward unit normal vector for each domain Qi. Note that

terms including VN in Eq. 2.65 are due to domain movement effects of a
one- or two-dimensional structural component.
Rewriting the eighth and ninth terms in the domain integral of

Eq. 2.64, one has

g ™ =gt v+ o (W) (2.66)
Vz Vz
and
24 AN 2 1, AN . 1 , 4N
72 ogh v = 7 eh, v e o) uen
3,k=n zi N jk i, k=n i N"jk N jk
s B 1 ks B 1Y
respectively.

The second terms on the right sides of Eqs. 2.66 and 2.67 vanish,

since VV1N = 0 and (ViN)jk = 0, respectively, due to the fact that ViN
is constant on Qi.

Four terms in the domain integral of Eq. 2.64 cancel; i.e.,

1
)jk + gy v

n
iN
[-gi zi ~ gi Vzi _ XZ gi (zi -
i"N i N i "N
z Vz j,k=n1 zjk

0 (2.68)

Then, Eq. 2.64 becomes

r n T
vo= 7 ff gttt e gt wmte 32 el sl - gl(wtvh
i i i - i “jk i
i=1 Q z vz j,k—n1 ik z

T n T
- gi V(Vzi Vi) - 22 gi (Vz1 Vi) +gi 6ui]d9
1 1 jk8 1
vz j,k=n1 zJk u

z

r T
+ 1

i=1

1,1 1 oh %h .
frig (V' n7)dr + 2~ &b + 2 (2.69)
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In order to take advantage of this result, one needs to write terms
on the right of Eq. 2.69 explicitly in terms of 6u and V. Since 3
cannot generally be determined explicitly from Eq. 2,62, one must resort
to a technique such as the adjoint variable method to achieve the

desired result.

2,5.2 Adjoint Variable Method
In order to treat terms on the right of Eq. 2.69, one may define an
adjoint variational equation by replacing z in the term on the right of
Eq. 2.69, by a virtual displacement A and equate the result to the

energy bilinear form, evaluated at the adjoint variable A; i.e.,

r n
- - i - -
2,q00 = L[ 18 W gt it P gt 3 an o3
> i=1 @ z Vz j,k-n z
jk
(2.70)

for all A€ Z, where A = [AI,AZ

,....,Ar,p]T. Presuming that the energy
bilinear form 1s strongly elliptic, this equation uniquely determines
A, if the terms on the right are continuous linear forms in ).

Since z satisfies the kinematic admissibility conditions, one may

evaluate Eq. 2.70 at A = z and Eq. 2.62 at z = A, to obtain

n
LIy tehst v gl vt e gt il ans B
i=]1 @ z Vz isk=n n, zjk
= 7 = +
au’Q(A,z) (z 2) l (A) 2 ’V(A)

’Q(z,k) - au’v(z,k) (2.71)
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Substituting this result into Eq. 2.69 and collecting terms that
are associated with variations in the design function and the velocity
field, one has the total differential of the functional of Eq. 2.63,
written explicitly in terms of design function variation and shape

variation, as

' r
v o=(1]f giicuidn+% B+ gy oV - al (z,0]}
i=1 @ u ’ ’
r T r T
+ {1 f, gt abyar - 3 [f, g vt vh
i=1lT i=1 @ z
n
T 2 T
v wwtvh e 7 gt (w! vi)jk]dn
Vz j,k=nl zjk
1 -— !
+ lu,v(l) au’v(z,x)} (2.72)

The differentials of the linear and bilinear forms on the right
side of Eq. 2.72 may be evaluated, using the expressions of Egqs. 2.60
and 2.61 and the results of each distributed component and truss, to get
explicit formulas. Evaluating the terms in the second bracket of Eq.
2.72 requires manipulations to derive identities for transformation of
the domain integral that involves velocity to a boundary integral, using
integration by parts and boundary/interface conditions. This will be
done in Chapter 3. Note that evaluation of the explicit design
sensitivity formula requires solution of Eq. 2.70 for the adjoint
variable and evaluation of functionals involving both the state z and

adjoint variable A. As will be seen in numerical examples, these
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calculations are direct and take full advantage of the finite element
method for solving both the state and adjoint equations, requiring only
evaluation of the solution of the same set of finite element equations

with different right sides.

2.6 Eigenvalue Design Sensitivity Analysis

One may now determine eigenvalue design sensitivity of a built-up
structure, due to variation in both design variables and shape. No
adjoint variable is required in eigenvalue design sensitivity
calculation. Eigenvalue sensitivity can be expressed directly in terms
of eigenvectors of the eigenvalue problem and variations in the
eigenvalue bilinear forms. Differentiability of simple (non-repeated)
eigenvalues is presumed to be used to obtain explicit formulas,
utilizing the material derivative formulas for simple eigenvalue

sensitivity analysis.

2.6.1 Calculation of First Variations
Consider the eigenvalue problems for vibration and buckling of a
built~up structure that is described by a variational equation of the

form of Eq. 2.45,

a, ovsy) = td, o(y,y) (2.73)

for all ; €Z, where Z is the space of kinematically admissible
displacements. Since Eq. 2.73 is homogeneous in y, a normalizing

condition must be added to uniquely define the eigenfunction. The
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normalizing condition employed is
du’Q(y,y) =] (2.74)

The energy bilinear form on the left side of Eq. 2.73 is the same
as the bilinear form in static problems treated in Section 2.5. There-
fore, it has the same‘differentiability properties discussed there. The
bilinear form du,Q on the right side of Eq. 2.73 represents mass effects
in vibration problems and geometric effects in buckling. In most cases,
it is even more regular than the energy bilinear form in its dependence
on design and eigenfunction. Since both bilinear forms in Eq. 2.73
depend on the design variable u and shape @, it is clear that the
eigenvalue 7 also depends on these quantities. The objective here is to
use this variational formulation to obtain design sensitivity of ¢
to variations in the design function and shape. Using the notation of
Eq. 2.59 for perturbation of the domain Q, one may calculate the design

variation of the bilinear form on the right side of Eq. 2.73 as [5]

[4r,701" = a5, (009 + 4 (5,9) + 4, (5,9)

L 1 -1 = v 11
=[ 7 a g 1Oy + di(s,8)] + ] 'y Oy
1=1 6u",Q i=1 o',V
r
+ 1, ,6hh (2.75)
i=1 u",Q

where y = [yl,yz,....,yr,s]T. This notation parallels that of Eq. 2.60,
which remains valid for design variation of the energy bilinear form on

the left side of Eq. 2.73.
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2.6.2 Eigenvalue Design Sengitivity
Presuming differentiability of the eigenvalue r and eigenfunction y
with respect to design and shape, supported by the proofs presented in
Ref. 5, one may take the total derivative of both sides of Eq. 2.73 to

obtain the formal relationship
(I ' > ' o) = -t - s o
85,0079 * ag, o3y) +al ((v,y) = ¢ dy, 0¥ + 2d, o (F,y)
' > ' >
toadg, ovy) + td) y(75y) (2.76)

for all }e:z. One may evaluate this equation at ; =y, using Eq. 2.74,

to obtain
g' = [a&u’ﬂ(y.y) - cdgu,n(y,y)] + [a;’v(y.y) - cd;’v(y.y)]
- [au,n(i,y) - Cdu’n(§,y)] (2.77)

Using symmetry of the two bilinear forms and y €Z, Eq. 2.73 implies that

the third term on the right of Eq. 2.77 is zero, ylelding the result

g = [aéu,ﬂ(y,y) EESY NSO 20 Iy [a;’v(y,y) - y(vy)]
(2.78)
The differentials of the bilinear forms on the right side of
Eq. 2.78 may be evaluated, using the expressions of Eqs. 2.60 and 2.75
and results for each distributed component and the truss, to get
explicit design senstivity formulas. As in the static case, finding
expressions in the second bracket of Eq. 2.78 for shape design

sensitivity will be done in Chapter 3. Note that evaluation of the
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design sensitivity of a simple eigenvalue given by Eq. 2.78 is explicit

in terms of the eigenfunction y and does not require solution of a

separate adjoint problem.
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CHAPTER 3

A UNIFIED METHOD FOR SHAPE DESIGN SENSITIVITY ANALYSIS
OF BUILT-UP STRUCTURES

3.1 Introduction

The technique employed in shape design sensitivity analysis of
structural components [5] and built-up structures requires integrations
by parts and manipulations to derive identities for transformation of
domain integrals that involve velocity to boundary integrals. The
integrations by parts that are required to achieve this objective depend
on the nature of the terms arising in the integral, hence on the types
of structural components involved. Furthermore, boundary and interface
conditions are needed to obtain the final shape design sensitivities.
In this chapter, standard formulas are derived for each structural
component type (beam, plate, plane elastic solid, etc.) to obtain
boundary integrals over the component boundary that involve only normal
movement of the boundary of that component. Since built-up structures
are defined as structures in which components intersect along common
boundaries, contributions from each of the components that interface at
the boundary may be accumulated to obtain the desired result for the
built-up structure.

A guideline to be used in identifying types of components that may
be interfaced and the specific character of the interface conditions

will be the structural finite element technique. Standard finite
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element interface conditions that are employed in analysis of built-up
structures include definition of interfacing conditions that must be
imposed in finite element modelling of a structure. The interface
conditions that define the space of kinematically admissible
displacement fields define the interface boundary conditions that are
used in carrying out the integration by parts to obtain standard design
sensitivity formulas for each structural component. Attention will be
paid to this aspect of consistency of built-up structural shape design
sensitivity analysis, with an eye toward unifying a practical analytical
formulation that is consistent with the finite element modelling
technique.

Basic shape design sensitivity forms for built-up structures that
involve up to two dimensional structural components such as beams,
plates and plane elastic solids are obtained in Section 3.2. In Section
3.3, analytical examples are used to obtain shape design sensitivity
forms for typical built-up structural models. These examples
demonstrate the unified method of shape design sensitivity analysis that
applies to practical built-up structures and yield formulas that may be
used in a variety of applications.

3.2 Basic Shape Design Sensitivity
Forms for Built-Up Structures

The first bracket of Eq. 2.72 for static response and the first
bracket of Eq. 2.78 for eigenvalues are simply explicit derivatives of
structural response measures with respect to a conventional design

variable u (cross-sectional area or thickness). In this chapter,
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analytiéal design sensitivity analysis for shape variation is
considered, to evaluate the remaining terms of Eqs. 2.72 and 2.78.
Hence, the conventional design variable u is suppressed in this
chapter. Further, even though there is self weight, in addition to
externally applied load, and the self weight will depend explicitly on
the design, the applied load is expressed only as f(x) in this
chapter. Shape design sensitivity forms are obtained for built-up
structures that involve beams, plates and plane elastic solids.
Rewriting shape design sensitivity terms in the second brackets of

Eqs. 2.72 and 2.78, one obtains

' r T T 4 T iT 1
y = 7 J 1gi(V1 ni)dr - Y Jf 1[g‘i(Vzi Vi) + gi iv(vZ vh)
i=l T i=1 Q z vz
2 T .
+ 7 gowmtvh rde e 0 - (2,0 (3.1)
i jk u,V u,v "’
j,k=n1 zjk
for static response and
] t 3 2
r = au,v(y,y) - d, y(3y) (3.2)

for the eigenvalue problem, respectively.

3.2.1 Static Shape Design Sensitivity Forms
Rewriting the variational equation of Eq. 2.51 on a deformed

domain, one has
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for all ;r € Z_. Suppose that the bilinear form in Eq. 3.3 is
differentiable with respect to shape and note that the material
derivative z depends on the direction V (velocity field).

Taking the material derivative of both sides of Eq. 3.3, with
conventional.design fixed, using Eq. 2.57, and noting that the partial

derivatives with respect to T and x commute with each other, one has

la(z,2)]

a;,v<g,;> +2(3,7) = [4D)] (3.4)

for all z € Z, where

]

L r - - ! _
lalz,z)) = § [f i[c(zi,zi) +c (zi,z i) + (c(z %z i))NViN]dQ
i=]1 (9]
r ' T
+ 7 { c(zi,;i) (Vi ni)dF (3.5)
i=1 T
and
. r T ,' T_
(@) = ] ff etz w2 tNae
i=1 @
r T T
+ Y f 1 fi ;i (Vini)dr (3.6)
i=1 T

In Egqs. 3.5 and 3.6, terms involving VN represent the effect of domain
movement in the normal direction to each domain defined, as discussed in
Section 2.4. The fact that the partial derivatives of the coefficients
that depend on conventional design in the bilinear mapping c(.,.) are
zero hag been used in Eq. 3.5 and f' = 0 has been used in Eq. 3.6,
because they do not depend explicitly on t. For ;r’ one can take

;T(x+rV(x)) = z(x) ; i.e., choose z as constant on the line
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X, = x+ wV(x). Then, ;T is an arbitrary element of Hm(nT) that
satisfies kinematic boundary conditions on FT. In this case, using
Eq. 2.65, one has

T
: -1 - -
1 zi + Vz1 Vi + Z:IViN =0 (3.7)

where V is defined in the local coordinate system.

From Eqs. 3.4 to 3.6, one obtains, using Eqs. 2.65 and 3.7,

L] -— r T -—
a y(z,2) = - v [ i[c(Vzi v+ z;ViN, zh)
s i=1 @
T
+ c(zi,Vzi Vi + zéViN) - (c(zi,;i))NViN]dQ

r T
+ 3 f { c(zi,gi)(v1 abydr (3.8)
1=1 T
and
- 3 T T T
* = - - - -
ty,v(?) Lyroret vzt vie 25 - el sty Mag
1 N N
1=1""g
r T T
+ 3 et 2ot abar (3.9)
1=1 T

respectively. As discussed in Chapter 2, VViN = 0 is presumed to obtain

Egqs. 3.8 and 3.9.

The final form of Eq. 3.1 becomes

r T T T T
v = ) ff leret VN et ml vh- fmd vl
=1 g
n
T T 2 T
1
- gii(\rzi vl - gt 1v(Vzi vh - 3 gii (v2l vi)_k]dg
z Vz j,k=n z J
1 Zjk
r T T
+ 1, 1t - et ab + DAl ahar (3.10)
1=1 r
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where it is assumed that f; = 0, and the integrals over 91 can be
transformed to boundary integrals by integrating by parts and using the
formal operator equations. This is essential in shape design

sensitivity analysis and remains to be done in the following section.

3.2.2 Eigenvalue Shape Design Sensitivity Forms
Writing the variational eigenvalue equation on a deformed domain,

one has

T
1 1=
[[ vy . Myda

1 Q
T

lp~n

H 1 -1
) ”91 c(y,y e = ¢

aT(yT’yT) s

i

"

ch(yT.yT) . (3.11)

for all ;T € Z.t » with the normalizing condition of Eq. 2.74.
Taking the material derivative of both sides of Eq. 3.1l, using
Eq. 2.57, and noting that the partial derivatives with respect to t and

X commute with each other, one has

la(y, )] = £ d(y,9) + cld(z, )] (3.12)

for all ; e Z, where

\ r 't . -t ! -
laCy, 1 = § [, leGh 3D + et + (e, 59,9 1an
i=1 Q

T
[, et yhot atyar (3.13)
1 T

+
i

il 11t

and
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- r T -4 T !
CTe2) B N G ol 'L B R O w5t Mg
i=1 @
T T
i i
+ 1yl Calyar (3.14)
i=1 r

The third term in the domain integral of Eqs. 3.13 and 3.14,
respectively, represents the effect of domain movement, as in static
response. As in Eq. 3.5, the fact that the partial derivatives of the
coefficients in the bilinear mapping c¢(.,.) are zero has been used in
Eq. 3.13. Also, M' = 0 has been used in Eq. 3.14. As in static
response, for ;T one can take ;'(xT + V(x)) =_y(x) . Hence, if ; € Z 1is
arbitrary, then ;T is an arbitrary element of ZT. Also, from Eq. 3.7,

one has

o T
- -1 - -
y=y+VWyV+ yNiViN =0 (3.15)

Now Eqs. 3.13 and 3.14, using Eqs. 2.65 and 3.15, become

a;’v(y,§) = laly,)] - a(3,y)

i iN e § T i =1_iN

T T
=‘sz [C(WV+YN ,y)+C(y,Vyv+yNV)
i=1

- (et yy viNiae

T

) [ ehyhot abar (3.16)
=1 T

and
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4y y P = W51 - 45,9

T

r T T
- - z ff [(vyi Vi + y;ViN)TMiyi + yi Mi(Vyi Vi+yi viN)
1=1 gt - N
iT i-1i iN
- (y My, Vlde
T T T
+ 7 1,y it alyar (3.17)
1=1 1t
respectively, where it is assumed that M; = 0.
Equation 3.12 can now be written as
A -— - \ - A ] - -
a o(v,y) + a(y,y) = ¢ d(y,y) + zd_ _(y,y) + zd(3,y) (3.18)
u,V u,v

for all ; € Z. Since ; € Z, one may evaluate Eq. 3.18 with ; =y, using

symmetry of the bilinear forms, to obtain
1 ] - T - . .
¢ dly,y) = a . (y,y) - @ __(y,y) + [a(y,¥) - zd(y,$)] (3.19)
u,V u,Vv

Noting that y €Z, the term in the bracket on the right of Eq. 3.19 is
zero. Furthermore, due to the normalizing condition of Eg. 2.74, one

has the simplified equation

r
¢ = a, vy -y y(y,y)

r T T T
= 1 1 et wt vh + 2t whow!t vhae
i=1 Q

T T

+ fri [c(yi.yi) - c(yi Miyi)](Vi alydr (3.20)

o~

i=1
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where, as in the static response case, integrals over Sﬁ can be
transformed to boundary integrals by integrating by parts and using
formal eigenvalue differential equations, which remains to be done 1in
the following section.

3.3 Analytical Examples of the Unified Method
for Shape Design Sensitivity Analysis

From the basic shape design sensitivity forms in Section 3.2, shape
design sensitivity forms for built-up structures that involve beams,
plates and plane elastic solids in a variety of configurations are
derived in this section by applying the boundary conditions (outside and
interface) to the standard forms for structural components of each
built-up structural model encountered. Typical outside boundary
conditions for structural components are summarized in Table 3.1.
Symbols used in Table 3.1 and their physical interpretations are defined
in Table 3.2. Final shape design sensitivity forms for static response
are obtained for the built-up structural models listed in Fig. 3.1.
Throughout the procedure, a general displacement or stress functional
that is defined on certain structural component in each built-up
structural model is considered to show the unified method for shape
design sensitivity analysis. One can notice that the final shape design
sensitivityvatms are identical, regardless of constraints, with only
different right sides of the adjoint equations. Similarly, shape design
sensitivity forms can be obtained for the eigenvalue problem, which is

not pursued in this section, but is treated in Chapter 5.



Table 3.1 Outside Boundary Conditions

for Structural Components
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Structural Boundary Conditions
Component Kinematic Natural
sS | z=0 (3.21) | Mm=0 (3.22)
X
Beam
=z = 3.2
(Bending) C z z 0 ( 3)
Fr M=V=20 (3.24)
X X
Fx z =0 (3.25)
Beam
SS z =0 (3.27) M=M=0 (3.28)
X Y
Plate c | z=vz.n=0 (3.29)
Fr M=M=V =V=20
: X ¥y X ¥ (3.30)
Plane Fx z=0 (3.31)
Elastic 1
Solid Fr T=0 (3.32)

* SS: Simply Supported, C: Clamped, Fr:

Free, Fx: Fixed



Table 3.2 Definitions of Symbols and Physical Interpretations

for Structural Components

Structural Physical
Component Definition of Symbol Interpretation
ﬁ = Elz
X
Bending moment
M = EIz
y
Beam ﬁ = GJz Twisting moment
(Bending) Xy &
V. = (EIz )
Shear force
V = (Elz
( yy)
Beam ﬁ = HEAz Axial force
(Axial)
M=-D(z + vz )
X X yy
Bending moment
M=-D(z + vz )
y ( yy XX
Plate M = -D(1-v)z Corner force,
Xy Torsional moment
Ve DGzt @2-v)z )
yy Effective shear
force
V = -D(z + (2=v)z__ )
y ( yyy ( XXy
Plane i 14 j
Elastic T= 3_ g (z)n”, i=x,y Traction

Solid

i=x,y




51

3.3.1 Description of Basic Built-Up Structural Models

Figure 3.1 shows basic built-up structural models that consist of
trusses, beams, plates, and plane elastic solids, interconnected at the
interior or edge (or corner) position. Most real engineering built-up
structures can be related to these models. Structural components in
each built-up structural model are specified by a, b,.... The domains
and outside boundaries of structural components in each built-up
structural model are denoted as Qi (@ for a single component)
and Fi (r for a single component), i= a,b,..., respectively. The
interfaces are specified as y for a single interface and yi, i=1,2,...
for multiple interfaces. For the models listed in Fig. 3.1, it is
presumed that all the outside boundaries are fixed and that dimensions
and material properties of structural components are given. Interface
conditions (kinematic and natural) are defined in Table 3.3 for each
model listed in Fig. 3.1. The symbols used in Table 3.3 and their
physical interpretations are defined in Table 3.2. The space of
kinematically admissible displacement fields Z is then defined as
displacements that satisfy all kinematic boundary conditions (outside

and interface) for each model encountered.

3.3.1a Beam—-Truss Built-Up Structure with Interior Interface

Bending of a clamped beam under lateral load, supported by a pin-
jointed truss, shown in Fig. 3.la, is considered. Effects of torsion
and axial deformation of the beam are neglected. Truss length is also
presumed to be fixed. This means that the ground supporting position of

the truss can move together with the position Y.



(a) Beam-Truss Built-Up Structure
with Interior Interface

(c) Plate-Truss Built-Up Structure
with Edge Interface :
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(b) Beam-Truss Built-Up Structure
with Edge Interface
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(d) Plate-Truss Built-Up Structure
with Corner Interface
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(e) Plane Elastic Solid-Truss Built-Up
Structure with Corner Interface

Figure 3.1 Basic Built-Up Structural Model
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(h) Plane Elastic Solid-Plate
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Built-Up Structure with
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The design variable is the position x of the supporting truss, as
shown in Fig. 3.la. The state variable consists of the displacement
functions zi, i=a,b of the beam components and the displacement vector q
of the truss components.

Interface conditions are obtained in Table 3.3; i.e., at the
interface vy, displacement and slope are continuous (Eq. 3.33), bending
moment 1is continuous and the shear force difference between beam

components acts as the load on the supporting truss (Eq. 3.34).

3.3.1b Beam—Truss Built-Up Structure with Edge Interface

Bending of a beam under lateral load with one end clamped and the
other end supported by a pin-jointed truss, as shown in Fig. 3.1b, is
considered. The same assumptions made in Subsection 3.3.la are applied
to this model.

The design variable 1s the position X of the supporting truss as
shown in Fig. 3.1b, and the state variable is the displacement function
z of the beam component and the displacement q of the truss component.

Interface conditions similar to those for Fig. 3.la are obtained in

Table 3.3 (Eqs. 3.35 and 3.36).

3.3.1c Plate-Truss Built-Up Structure with Edge Interface

Bending of a rectangular plate of constant thickness under lateral
load with two sides clamped and the other two sides free, supported by
pin-jointed trusses at the free edges shown in Fig. 3.le, is
congidered. It is presumed that truss lengths are fixed and the

boundaries of the plate components are parallel to the coordinate axes.
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The design variable 1s the position ;'of the supporting trusses as
shown in Fig. 3.lc. The state variable consists of displacement
functions zi, i=a,b of the plate components and displacement vectors qi,
i=¢,d of the truss components. |

The interface conditions are obtained in Table 3.3; i.e., the dis-
placement and slope at the interface Yi, i=1-3 are continuous (Eqs. 3.37
to 3.39), the bending moment and shear force are continuous at YZ

(Eq. 3.40), and the difference of corner forces at Yl and Y3 acts as the

load on the truss components c¢ and d, respectively (Eqs. 3.41 and 3.42).

3.3.1d Plate-Truss Built-Up Structure with Corner Interface

Bending of a rectangular plate of constant thickness under lateral
load with two sides clamped and the other two sides free, supported by a
pin-jointed truss at the plate corner as shown in Fig. 3.1d, is
considered. The same assumptions made in Subsection 3.3.lc are applied
to this model.

The design variable 1s the position x of the supporting truss as
shown in Fig. 3.1d, and the state variable is the displacement function
z of the plate component and the displacement q of the truss component.

Interface conditions similar to those for Fig. 3.lc are obtained in
Table 3.3 (Eqs. 3.43 and 3.44).
3.3.1e Plane Elastic Solid-Truss Built-Up Structure

with Corner Interface

In-plane deformation of a rectangular plane elastic solid under

traction with two sides fixed and the other two sides free

interconnected by trusses at the corner of plane elastic solid, as shown
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in Fig. 3.le, is considered. It is presumgd that the truss lengths are
fixed.

The design variables are x and ; of the intersecting position as
shown in Fig. 3.le. The state variable consists of displacement
functions zj, j=x,y of the plane elastic solid and displacement vectors
qi, i=a,b of the truss components.

Interface conditions are obtained in Table 3.3; i.e., displacement

and traction are continuous at y (Eqs. 3.45 and 3.46).

3.3.1f Beam-Plate Built-Up Structure with Interior Interface

Bending and in-plane deformation of a clamped beam-plate built-up
structure under lateral load, as shown in Fig. 3.1f, are considered.
Effects of torsion and axial deformation of the beam component are also
considered. In this case, a part of the plate boundaries is the domain
of the beam, denoted as yl as shown in Fig. 3.1f. Hence boundary
movement of the plate component causes movement of the entire domain of
the beam component. It is presumed that the boundaries of plate
components are parallel to the coordinate axes.

The design variable 1s the location ; of the beam component. The

state variable consists of bending displacements wt

, i=a,b, in-plane
displacements Gij, i=a,b, j=x,y of the plate components where j 1is used
to specify the direction in in-plane displacement, bending displacements
v and ; of the beam in the z- and y-directions, respectively, and axial

displacement Vv of the beam component. For the corresponding adjoint

variable, a bar(-) is employed on top of the state variable as

- ~

w, w, ;, v, and v for design sensitivity analysis, which will be used in

the following section.



Interface conditions are obtained in Table 3.3; i.e., bending
displacements and normal slopes (torsion angle for the beam) are
continuous at Yi, i=1-3 (Eq. 3.47), in-plane displacements of the plates
and axial displacements of the beam are continuous at yi, i=1-3
(Eq. 3.48), differences of the bending moments and shear forces between
the plates act as the twisting moment and load on the beam at YI
(Eq. 3.49), corner forces from the plates and shear forces from the beam
should be in equilibrium at yi, 1=2,3 (Eqs. 3.50 and 3.51), difference
of tractions between plates (plane elastic solids) acts as the load on
the beam at Yl (Eq. 3.52), and forces at the interfaces yz and y3 should
also be in equilibrium (Eqs. 3.53 and 3.54), where in Eqs. 3.53 and

3.54 Vx represents the shear force of the beam in the y-directionm.

3.3.1g Beam—Plate Built-Up Structure with Edge Interface

Bending and in-plane deformation of a beam-plate built~up structure
under lateral load with two sides of the plate clamped and the other two
sides of the plate with beams free, as shown in Fig. 3.lg, are
congsidered. The same assumptions made in Subsection 3.3.1f are applied
to this model.

The design variables are the positions x and ; of the beam
components a and b, respectively, as shown in Fig. 3.1g. The state
variable is the bending displacement w, the in-plane displacements
Qﬁ, j = x,y, of the plate component, and the bending displacements
vi and ;1, i=a,b, the axial deformations Gi, i = a,b, of the beanm

components.
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Interface conditions similar to those of Fig. 3.1f are obtained in
Table 3.3 (Eqs. 3.55 to 3.70).
3.3.1h Plane Elastic Solid-Plate Built-Up Structure

with Interior Interface

Bending and in-plane deformation of clamped plates under lateral
load connected by plane elastic solids with fixed boundaries, as shown
in Fig. 3.1h, are considered. Boundary movements of the plate
components a and b cause movements of the entire domains of the plane
elastic solids ¢ and d. It is presumed that the plane elastic solids c¢
and d do not bend in the y-direction during shape variation.

The design variable is the location ; of the plane elastic solids ¢
and d. The state variable is the same as defined in Subsection 3.3.1f
for plate components a and b and in-plane displacements ;1j, i=c,d,
j=x,z of the plane elastic solids c and d. The same notations are used
to identify the corresponding adjoint variable, as defined in Subsection
3.3.1f,

Interface conditions are obtained in Table 3.3; i.e., the dis-
placement (bending and in-plane) and normal slope are continuous at
Yl, i=1-3 (Eqs. 3.71 and 3.72), bending moment (shear force) is con-
tinuous (in equilibrium in force system) at yl (Eq. 3.73), corner forces
and tractions are in equilibrium at Yi, 1=2,3 (Eqs. 3.74 and 3.75), and
the in-plane forces are in equilibrium at Yi, i=1-3 (Eq. 3.76).

3.3.11 Plane Elastic Solid-Plate Built-Up Structure
with Edge Interface
Bending and in-plane deformation of a plate under lateral load with

two sides clamped and the other two sides connected by plane elastic
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solids a, b, ¢, and d, with fixed boundaries, as shown in Fig. 3.11, are
considered. Boundary movement of the plate component causes movement of
entire domains of the plane elastic solids a, b,lc, and d.

The design variables are locations X and ; of plane elastic solids
c and d, and a and b, respectively as shown in Fig. 3.1i. The state
variable is the bending (in-plane) displacement w (;d, i = x,y) of the
plate components and the in-plane displacements Sij, i=a,b,c,d, j=x,z
for i=a,b and j=y,z for i=c,d of the plane elastic solids. The same
notations are used to identify the corresponding adjoint variable, as
defined in Subsection 3.3.1f.

Interface conditions are obtained in Table 3.3 (Eqs. 3.77 to 3.83).

3.3.2 Shape Design Sensitivity Forms

3.3.2a Beam-Truss Built-Up Structure with Interior Interface

Consider a displacement response functional defined in @2 as
Wa = fga §(x~x)zdQ (3.84)
where x e o is presumed to be a fixed point and g(x) is the dirac
measure. Since g(x—;) in Eq. 3.?4 is defined on a neighborhood of o2 by
zero extension and ; is fixed, 8 (x—g) = 0. Thus Eq. 3.84 can be
treated as the functional form of Eq. 2.63 and the adjoint equation
is, from Eq. 2.70,

a0, %) = [ _8(x-x)Ade (3.85)

Q

for all A € Z. Equation 3.85 has a unique solution A, which is the

displacement due to a unit load at x. That is, with smoothness
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agssumptions, the variational equation of Eq. 3.85 is equivalent to the

formal operator equation

(EIa)‘:x)xx = §(x~x) , xe Q2

b.b b
(EI Axx)xx 0 y Xe Q (3.86)

where ) satisfies all the boundary conditions of Eqs. 3.23, 3.33 and
3.34 in Tables 3.1 and 3.3.

One can write the shape design sensitivity form of Eq. 3.10 as

i, z1 (AiVi)
XX xx''x  Jxx

_ 1., 1.4
y =7 [ : {E1 [(z V) A ]

a i=a,b Q
- fi(xivi) - 6(x—x)(z:Va)}dQ

+ 7 (e - el

i=a,b

i

i i
xx Axx \'/ ri (3.87)
uy

Integrating terms in the domain integral of Eq. 3.87 by parts, one has

' 1.4 11 14 1.4
Y, - iZa \ fﬂi [(ET"A ) (2 V') + (EI"z ) (A V")

- 100D - 80 ) 1de

i i i i1 i i.1 i
+ z [EI (z;l(v )xxn + EI Z“(Aiv )x - (EI Axx)x(z)j;v )
i=a,b
i1 i i 1 i1 1 i
- (EI zxx)x(‘i" y+ (eab - Ertzl Al vt i

(3.88)
Then, from the formal operator equations of Eqs. 2.1 and 3.86, one
obtains the final shape design sensitivity form, by imposing the

interface conditions of Eqs. 3.33 and 3.34 in Table 3.3, as
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' 11 .4 i1 i _ i1 i 14,1
va-izab [ EI Z A (EI Axx)xzx (EI zxx)xxx+f Ay
bl

(3.89)
at the interface Y.

If the outside boundary Pi is not fixed, one obtains the shape

design sensitivity form as

' ii i i
Y= 1 (E17z, A ) V| (3.90)
i=a,b
at the clamped boundary Pi, i=a,b from Eq. 3.23 in Table 3.1,
T S U SV SRR B SR SN |
Y = )) [ - (BI Axx)xzx (E1 Z i) Y i (3.91)

i=a,b
at the simply supported boundary ri, i=a,b from Eqs. 3.21 and 3.22 in

Table 3.1, and

' 1.4, 1
Y = 7  (fFaA)v (3.92)
2 i=a,b rt

at the free boundary Fi, i=a,b from Eq. 3.24 in Table 3.1.

3.3.2b BeamTruss Built-Up Structure with Edge Interface

The same procedure presented in Subsection 3.3.2a is applied to the
problem in Subsection 3.3.1b to yield the final shape design sensitivity
form at interface y , by using the interface conditions of Eqs. 3.35 and
3.36 in Table 3.3, as

'

¥y = [Ex = (EI) ) z - (EIz ) A1V y (3.93)
If the outside boundary T is not fixed, one can obtain the same shape
design sensitivity forms at T as in Eqs. 3.90 to 3.92 depending on the

outside boundary conditioms.
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3.3.2¢ Plate-Truss Built-Up Structure with Edge Interface

Consider a stress response functional defined in Qa instead of a
displacement response functional for the present model. The maximum
bending stress for a plate occurs on the surface of the plate and is
given in the form

Eh
0 = - ———— (z + vz ) (3.94)
X 2(1_\,2) XX yy

where cx is taken as a strength constraint. One can extend the idea to
the Von-Mises fajlure criteria, which will be treated in Chapter 5. As
will be discussed in Section 4.3, one may use a characteristic function
Mp(x) defined on a small open subset of Qp of @ to treat the pointwise
stress constraint. Then, the averaged value of o, over this small
region 1is

v, =J fga o M do

- -_—_FEh ff (z + vzyy)Mde (3.95)

2(1-v%) TTgf
Thus, Eq. 3.95 can be treated as the functional form of Eq. 2.63 and the

adjoint equation is, from Eq. 2.70,

- Eh - —
= - =1 + vA_)M d 3.96
a(i,1) [ a Qg +v yy) 539 ( )

2(1-v%) g
for all A € Z . Equation 3.96 has a unique solution A [5]. With
smoothness assumptions, the variational equation of Eq. 3.96 is

equivalent to the formal operator equation

4

by - —E o 4w ), x eg

2(1—v2) Pix pyy

pvaP = 0 , xegb

(3.97)
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where ) satisfies all boundary conditions of Egs. 3.29, 3.30 and 3.37 to
3.42 in Tables 3.1 and 3.3.
One can write the shape design sensitivity form of Eq. 3.10 as
T T
i .1 i1 i1 i
¥ = 7 [ OIA (V2" v+ wvzm vi) ) + 2
¢ i=a,b Qi > xx yy yy
T T
: R | i 1
x ((Vz2= v + wW(vz" V) )
« )y ~

T T
i 171 i 1 i i
+ 2(1~v)zxy(Vz v )xy + (Vv )xx(zxx + vzyy)

T

i1 i
VA v
( )YY(ZYY

+

T
i b B | i
+ vzxx) + 2(1-v)(WA" Vv )xyzxy ]

T T
-t vh e B+ w ) (%® vP) g
2(1-v°)  Pxx pyy
i i i i i i i i i

+ 7 [ (2 =D x_ (z__  + vz )+ 2 (2 + vz )

1=a,b I,iUYZ XX XX yy Yy yy XX
11 1T 4

+ 2(1-v)2A V™ n )dr (3.98)

(1-v) xyzxy]} ( )

Integrating terms in the domain integral of Eq. 3.98 by parts, one has

, T T
Yy = 7 /] {Di[V4Ai(Vzi vi) + \7I‘zi(v>‘i Vi)]
c i
i=a,b Q
T T
- efmt vl 4 ——Eh—z M.+ W ) (vz? v®)}da
2(1-v°)  Pxx pyy
14 1 1T 4 i1 1T 4
+ ji 9 D [(xxxwxyy)(Vz v )x+(zxx+vzyy)(vx Vo,

=a,b T vy



-l

XX

+ 1Ty

i=a,b T

1 . 1
(Ayyy+(2 v)xxxy)(Vz

T T
+ 2(1—v)Da[Aiy(Vza v + ziy(vxa v3)] c

+ I Iy

i=a,b T

i,.,.1
D [(xyy

T

T
+vxix)(vZ1 vh

1T i

V)—(

T

él—"

+(z
y(

i 171 i i
. + (2 v)kxyy)(Vz \' )—(zxxx+(2—v)zx
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T
it 1
yy)(vx V7)ldy

T

i i* 1
+vzxx)( VATV )y

T

i i i 1
zyyy+(2 v)zxxy)(VX V7)ldx

T

2(1-—v)Db[A:y(Vzb Vb) + zzy(VAb Vb)]

2(1-v)p?[
2(1-v)pP|
2(1-v)D?[
2(1-v)pP
2(1-v)D®[
2(1-v)p°[

i1

L{EA

al a
\AD)

+

a
A_ (W
xy( 2

T
b vb)

+

Ab (vz
Xy

T
a a _a
Axy(Vz \'A)

T

b Vb)

Ab (vz +
Xy

T
a a_a
Axy(Vz v

T
b Vb

A:y(Vz )

- Di[)\i (z1 + vz

XX XX

T

T
a a a
zxy(vx V)]

T
b b .b
zxy(vx V)]

T
a a_a
zxy(VA V)]

T
b b™_b
29
zxy( )]

T
a a a
zxy(AA V9]

T
b b . b
’-xy(” V)]

+ 2(1—v)xiyz ]}(vi ni)dr

i
Xy

1

1 ) + . (z1 + vz
Yy yy yy

)

XX

(3.99)



72

where Cy» Cy, C3, and C, are cormer points of the rectangular plate
components as shown in Fig. 3.lc.

From the formal operator equations of Eqs. 2.17 and 3.97, one
obtains the shape design sensitivity form, by imposing the interface

conditions of Eqs. 3.37 to 3.42 in Table 3.3, as

{ a,a,,a.a a ..a b.b.bb b
¥, = [, [(£2 %40 M2V (£ WALz

b
XX )V 1dy
Y

a,a a,.a a a .a,,.a

+ {[£°2 2(1-v)p (Axyzx + zxylx)]V
b.b b,,b b b ,by,,b

+ [£727 + 2(1-v)D (Axyzx + zxykx)]V }'Yl
a.a a,.a a a ,ay,,a

+ {[£72" + 2(1-v)D (Axyzx + zxylx)]V

b.b b,.b b b .b b
+ [£A 2(1-v)D (Xxyzx + zxyxx)]V }'YB (3.100)

at the interfaces Yi, i=1-3,
If the outside boundary ri 1s not fixed, one may obtain the shape
design sensitivity forms as
! i, 1 1 xi i1 1, vyl
Y= 7 [, O_ 2z Vidy+ ] [ (D7x z IV dx
¢ i=a,b Pi XX i=a,b ri ¥y
(3.101)

at the clamped boundary Fi from Eq. 3.29 in Table 3.1,

! i i i i i i
vc = —128 b fri D [(Axxx+ leyy)zx * (zxxx * vzxyy)xx
Tday

i]VXidy

1 + (z1 + uz1 )Ai]Vyidx

1,1 i
- D + v
I Jy [y + V)7 yyy xxy’ y

=3,b T
(3.102)

at the simply supported boundary Pi from Eqs. 3.27 and 3.28 in
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Table 3.1, and
' 1.1,,.47 4
¥ o= 7 [, (A n)dr (3.103)
c i
i=a,b T

at the free boundary Pi from Eq. 3.30 in Table 3.1.

3.3.2d Plate-Truss Built-Up Structure with Corner Interface

The same procedure presented in Subsection 3.3.2¢ is applied to the
problem in Subsection 3.3.1d, to yield the shape design sensitivity form
at the interface y, by using the interface conditions of Eqs. 3.43 and

3.44 in Table 3.3, as

?
Wd = [f) - 2(1-\J)D(Axyzx + zxyAx)]V!Y (3.104)

3.3.2e Plane Elastic Solid-Truss Built-Up Structure
with Corner Interface

The same procedure presented in Subsection 3.3.2¢ can be applied to
the problem in Subsection 3.3.le to yield the shape design sensitivity
form at the interface vy, by using the interface conditions of Eqs. 3.45

and 3.46 in Table 3.3, as

v=01 i 1 Mot
i=x,y i,3=x,y
+ ¥ [cij(k)nj(VzTV) + oij(z)nj(VATV)] (3.105)
1,3=x,y Y

If the outside boundary I' 1s not fixed, one may obtain the shape

design sensitivity forms as

v =- 7 (o2t n1oT
1,3=x,y

+ 7 1Mot + oIzl (nalyy) ; (3.106)
i’j=x’y
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at the fixed boundary T from Eq. 3.31 in Table 3.1 and

v = ) b T r (3.107)
¢ 1=x,y

at the free boundary T from Eq. 3.32 in Table 3.1.

3.3.2f Beam-Plate Built-Up Structure with Interior Interface
Consider a displacement response functional defined in 9° as
v = [[ , 8(x—x)wdq (3.108)
a
Q
With the same procedure described in Subsection 3.3.2c, the adjoint
equation is, from Eq. 2.70,
a(\,0) = [f _ 8(x-x)wda (3.109)
1)

for all A e Z, which is equivalent to the formal operator equation

p27*%? = §(x-x) , x e ¢

p°v*a? = 0 , o xeg

-7 o;j(;) = 0, i=x,y, x € Qk , k=a,b (3.110)
i=x,y

where A satisfies all the boundary conditions of Eqs. 3.23, 3.25, 3.29,
3.31, and 3.47 to 3.54 in Tables 3.1 and 3.3.
The shape design sensitivity form of Eq. 3.10 is obtained, by using

the state and adjoint variables defined in Subsection 3.3.1f, as



¥, = le EI( ) 5+ v GV ]
+ GJ[(vax)xy\-rxy + vxy(vax)xy]
+ EA[(vax)x:’?; JX(\:?xv")x] }dx
K=k, khk K-k
+ kza’b ffgk{D (W (W V) + w(we v )yy)
+ ;l;y((wkka)w + w“Tv“)xx)

T T

k k_k -k k k
+ 2(1 v)wxy(vw ' )xy + (W V )xx(wxx + w

T

-k _k k k -k k
+ (W' Vv + + 2(1=-v)(W Vv
( )yy(wyy vwxx) (1-v)( )xyw
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+ 7 HE® R vEy ¢ IRy L pek
i,j=x,y
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k
xy]

- T .. T
- WV - T PR VS - B (w® V) 1aa

i=x,y

k-k k,~k . k k -k , k
+ Za ) fyl{f v =Dl (v o+ vay) +w_  (w
— Gy
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Since the outside boundary I‘i is presumed to be fixed, boundary terms
at Fi are omitted in Eq. 3.111. Integrating terms in the domain

integral of Eq. 3.111 by parts, one has

V; = IYI [(B1v ) (v.V¥) + (GIv ) (vax)

-GI(v_ v Vi+ v 3 V5
XXy Xy XXy Xy

—(EAG;)X(;;VX) - (EAgx)x(G;Vx)]dx

T T
TR R § N Al G S AT LY
k=a,b Q

- T - T
- 3 [o;-"(%“)(vw* vy + oj“«?*‘)(ve“ vEy)

T T
k,,-k -k k .k k k -k~ _k
+ D + W V + + W Vv
R [(wyy w_)( )y (wyy w)( )y

T T
- —k kK oky ok Lk -k k
vy + (2 v)wxxy)(Vw V) (wyyy + (2 v)wxxy)(Vw V) ldx

T T T
b,- b b b b, -b.b
+ {2(1-v)D [wxy (w V) +wxy(w v)] Yz

T T
a,~a a.a a , —-a._.a
- 2(1-v)D [wxy(Vw VY + wxy(vw V)]

T T
b,-b b b b -b b
- 2(1-v)D [wxy(Vw V) + wxy(vw V)]
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+

- T _T
20-0)0% (v (W V) + wl (W V) 3 }

- T
.y Il{(fk;lk_’_ o ERIERLy gk Ky

k=a,b vy i=x,y
T
k.~k , k k -k , k k ~k k .,k k
-D [wxx(wxx + vay) + wyy(wyy + vwxx) + 2(1—v)wxywxy](V n)
13, %, §, & Kk 13, ~ky 3§, kL Kk
+ 7 [ @Ol (WS V) + @I (wWE v
i,i=x,y .
13,7k 13 %k, kL k
- )) oW )e" (W)™ n7)}dx (3.112)
i,j=x,y

Boundary terms at the outside boundary Pi are omitted in Eq. 3.112,
since the outside boundary I‘i is presumed to be fixed.

From the formal operator equations of Eqs. 2.17, 2.25 and 3.110,
one obtains the shape design sensitivity form at the interface Yl » by

imposing the interface conditions of Eqs. 3.47 to 3.54 in Table 3.3, as

. kk . ko k-k _ k-k _ -k X« |k
Ye = Za,b Iyl e+ o (wyywyy o (wyyy * Wxxy)wy
Lk k =k, ky
(Wyyy * vwxxy)wy)]v
- . T - T
+ 7 0 PEOIE VY)Y« YIFRIKR vy
i=x,y y y
f YY1 YK IR v ax (3.113)

i=x,y
3.3.2g Beam-Plate Built-Up Structure with Edge Interface
The same procedure presented in Subsection 3.3.2f is applied to the
problem in Subsection 3.3.1g to yield the shape design sensitivity form

at the interface Yi » 1=1,2, by imposing the interface conditions of
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Eqs. 3.55 to 3.70 in Table 3.3, as

1 - -
Vg = IYI{[fw +Dw _w  ~w o w - (w

- X
- +
(wx vwxyy)wx)]v

+ 1 1@l @y + M@I @)
3=x,y

-7 MA@ F@E) vy

+
J=x,y
+ W+ W o~w.w = (w -
[ 1w D(wyywyy WV (wyyy + uwxxy)wy

Y

- y
- (w + w w A
( yyy XXY) y)]

+

7 1dend@ ) + Sl e v
j=x,y y 7

Fa- (5 @I @) 1v rax (3.114)
i=x,y

+

3.3.2h Plane Elastic Solid-Plate Built-Up Structure
with Interior Interface

Consider a displacement response functional defined in Q? as

Y = ffna 8(x-x)wdQ (3.115)

With the same procedure discussed in Subsection 3.3.2c, the adjoint
equation is, from Eq. 2.70,

a(\, ) = [f | 8(x-x)w dg (3.116)
ﬂa
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for all A e Z, which is equivalent to the formal operator equation

DVAGa = 8§(x-x) , xe &
pva® = 0 , Peg (3.117)
-7 M@ =0, 1=y, x ed, ke=a,b

=7 @ =0, 1=z, x €2, kee,d

where A satisfies all the boundary conditions of Eqs. 3.29, 3.31, and
3.71 to 3.76 in Tables 3.1 and 3.3,

The shape design sensitivity form of Eq. 3.10 is obtained, by using
the state and adjoint variables defined in Subsection 3.3.1h, as

T T
v k,—k k  k k,k
Y, = za b[fgk{n v (W V) + wW(Ww v )yy)
9

T T T
~k k_k k .k k k. k
wyy((Vw v )yy + W(Ww V )xx) + 2(1 v)wxy(Vw v )xy

+

T T
-k _k k k -k k k k
(W Vv )xx(wm{ + wyy) + (w Vv )yy(wyy + Wxx)

+

T
-k k k
2(1-v)(Ww Vv )xywxy]

+

- T - T
7 1o e v+ A3 ek viy)
i,j=x,y

+

T - T N " T
V) - T PR V) - sxex) (WP V) e
i=x,y

DA T a b Al NIl S R
k=a,b Yl yy yy yy
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-k k
+ 2(1-Vw_ w__ + F
( xy )

i1=x,y

ki~ki
w

- T

-1 1eHE N oFax

i,j=x,y

19, % 1§, kT k 15,k 14, & k
+ I 0T L EOEUWT V) + o W e (W V)
k=x,d Q 1,j=x,z
ki, &k
-3 F (W V)l (3.118)
i=x,z

Since the outside boundary ri is fixed, boundary terms at rf i=a-d, are
omitted. Integrating the remaining terms in the domain integrals of
Eq. 3.118 by parts, one has

T

[ _ T )
k=a,b @

- T - T
-7 e W VS ¢ AE R V)

i,j=x,y J ]
T - T a “ T
- FEE VS - T FNWE V) - s (w® vP) 1da
| 1=x,y
# 7  f,DNIGE W YL N RN - L
k=a,b Yl Yy xx y vy s y
-k =k kT k
- Gy + e (WS V)
S wE w3 V) Lax
y XXy
T T
+ {2(1—v)Db[v—v§y( wP vP) + wzy( W vP)] 5
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T T
a -a a.a a,-a_a
- 2(1-v)D [wxy(Vw VY)Y + wxy(Vw V)]

T T
b,-b b _b b ~-b"_ b
2(1-v)D [wxy(Vw vY) +wxy(Vw vl 3

T T
+ 2(1-v)Da[Giy(Vwa v + wiy(w_va v

- T
- k
1 e e T PR R
k=a,b vy i=x,y

DR R W)+ oK
XX XX vy

(wk + wk)
yy yy XX

T
-k k k™ k
+ 2(1-v \
( )wxywxy] (V' n")

. - T .
VD BN Fanl PTG A DR P~ SR Py S Y
i,j=x,y
15,y 15,7k, kL Kk
=T 1M E I 1R o5 yax
i,i=x,y
13, &y, k. k 13,4y, kT k
LD N AN SR [on(w W V) + o 2w ) (e V)]
k=e,d @ 1i,j=x,z J
ki, &' k
- 1 F(w v)le (3.119)
i=x,z

Boundary terms at Pi, i=a-d, are omitted, since the outside boundary 1is
fixed.

From the formal operator equations of Eqs. 2.17, 2.25 and 3.117,
one obtains the shape design sensitivity form at the interface Yl, by

imposing the interface conditions of Egs. 3.71 to 3.76 in Table 3.3, as
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| - - - -
Y = 7 [ gkk _ DR+ K o 4 W+ oKy vk
h k=a,b Yl yyy XXy’ 'y yyy xxy’ 'y

- T . =T
+ 7 1AEOIEE V) + JIE T GE vy
j=x,y y y

PR -y IR IR 1vR ax (3.120)
i=x,y

3.3.21 Plane Elastic Solid-Plate Built-Up Structure
with Edge Interface
The same procedure presented in Subsection 3.3.2h is applied to the
problem in Subsection 3.3.11 to yield the shape design sensitivity form
at the interfaces yi, i=1,2, by imposing the interface conditions of

Eqs. 3.77 to 3.83 in Table 3.3, as

' - - - ~ - x
Y, = sz {[fw + D(w, _w =~ W t \wayy)wx U vwxyy)wx)]v

+ 7 1e8@nl@ v + M@l @ v
j=x,y ’ x x

| F P -7 M@ IRy
i J=x,y

- - - - — oy
+ - + - +
+ IYI (lfw + Dlwppwe s = gy + W v = o+ v w1V

+ 7 @@ vy + @l @ vy
I=x,y y y

f I -7 AN jax (3.121)
3=x,y
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CHAPTER 4

NUMERICAL CONSIDERATIONS IN DESIGN SENSITIVITY
CALCULATIONS

4.1 1Introduction

The formulation presented in Chapters 2 and 3, using distributed
parameter theory for design sensitivity analysis and the finite element
method for structural analysis, provides a tool to check for numerical
errors in finite element analysis. One can predict the effect of a
design change that is to be implemented with the design sensitivity
analysis method. When reanalysis 1s carried out, one can compare the
predicted change in structural response with the change realized. If a
disagreement arises, then error has crept in the numerical approxi-
mation. If onme carries out design sensitivity analysis directly with
the matrix/finite element method, in which the structure is discretized
and the design variables built into the global stiffness matrix, then
any error that is inherent in the finite element model is consistently
parametrized. Therefore, one obtains precise design sensitivity
coefficients of the matrix model of the structure, without realizing
that there is substantial inherent error in the original model. 1n
fact, as optimization is carried out, the optimization algorithm may
feed on this error and lead to erroneous designs. In the current
formulation, one can use the design sensitivity formulas derived from

distributed parameter structural theory and the finite element
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model to obtain a warning that approximation error is creeping into the
calculation.

Before going to numerical calculations of structural analysis and
design sensitivity analysis of complex built-up structures, it is
helpful for the designer to investigate inherent numerical aspects
involved in finite element analysis and design sensitivity analysis of
structural components.

Finite element analysis and the associated characteristics of
simple beams and plates are presented in Section 4.2, to gain insights
for design sensitivity calculations of a beam-plate built-up
structure. Gauss quadrature and accurate stress computations are also
discussed in Section 4.2. A characteristic function 1s introduced to
treat stress constraints in Section 4.3. Element boundary movement
effects for shape variations, using the material derivative idea are
considered in Section 4.4. In Section 4.5, a sparse matrix symbolic
factorization method for iterative analysis is outlined. Finally,
numerical calculation of design sensitivities for a beam-truss built-up
structure 1s carried out and results are tabulated in Section 4.6.

4.2 Accuracy and Characteristics
of the Finite Element Method

In structural optimization, the state and adjoint equations are
solved numerically using the finite element method, which 1s regarded as
a versatile tool to solve these equations. The importance of

maintaining acceptable accuracy in finite element analysis cannot be
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overstated, since design sensitivity coefficients are evaluated from the
finite element analysis results.

For fourth order boundary-value problems that arise in the case of
beam and plate bending, the design sensitivity coefficients include up
to third derivatives of displacement functions, as shown in Chapter 3.
Hence, it is important to employ appropriate finite elements and the
associated shape functions to get accurate values of displacements and
their derivatives needed iIn calculating design sensitivities.
Particularly in shape design sensitivity analysis, good approximate
values related to the design sensitivity coefficients that are evaluated
at the boundary or interface are required, since they can be
significantly in error, depending on the shape functions employed.

In this section, accuracy and the associated characteristics of the
finite element method for simple beam and plate bending problems are
discqssed, based on the displacement method, since the displacement
method formulation of the finite elements matches the theory of design
sensitivity analysis presented in the preceding chapters. Some remarks
on Gauss quadratures and stress computations are also discussed in this

section.

4.2.1 Finite Element Analysis of a Beam
Beams serve as structures in their own right and also serve as ribs
and edge stiffners for plates and shells. Many researchers have tested
new optimization methods with a simple beam bending problem. In most

cases, cubic shape functions are employed with successful results.
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However, for shape design sensitivity analysis, it is worth while to
investigate the finite element method and.its characteristics for a
simple beam bending problem.

Consider a simply supported beam subject only to bending, as shown
in Fig. 4.1. The finite element method with cubic shape functions
allows the displacement function and its first derivative to be
continuous between elements. In a normalized interval connecting points
1 and j, with coordinate £ = x/L, as shown in Fig. 4.2, one seeks to
construct a function v(x) that will satisfy conditions on displacement
and its first derivative at the end points. This function can be

written in cubic form as

ve=a + a,x + q3x2 + a4x3 (4.1)

This will define the shape’ functions corresponding to vy and v; by
taking for each a cubic with unit value at the appropriate points
(x = O;L) and zero at other points. The shape function in this case is
of the form
No= 11 - 38 + 28, x(5- DY
(4.2)
Ny =367 - 28, x(8 - )

If the displacement function has to satisfy up to second derivative

continuity at the nodal points, it can be written as a quintic,

2 3 4 5
v = 81 + Bzx + B3x + B4x + Bsx + 86x (4.3)
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Figure 4.2 Degree of Freedom for Cubic Shape Function
in One Dimensional Beam
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The shape functions in this case are fifth order polynomials that
can be written in a normalized interval with coordinate n = x/L, as
shown in Fig. 4.3, as

L2

2

2
» LT -300) |, 2 (nd-2nten®))

3 3 4

Ni = [1-10n +15n4-6n5, L(n-6n +8n4- 3n5), (n2—3n3+3n —ns)]

(4.4)

Nj - [10n3-15n4+6n5

To test accuracy of the finite element method using cubic and
quintic shape functions, a simply supported beam with rectangular cross
section of Fig. 4.1, with the finite element model of Fig. 4.4, is used
to 1llustrate how approximate solutions of the finite element method
| compare with analytical solutions.

Three different loading conditions are applied, to compare
numerical results of up to third derivatives of displacement functions
with those of the analytical solution, since the loading conditions
(either static or adjoint load) in design sensitivity calculations are
one of the following loads: point load, distributed load, point moment,
or some combination of these.

Numerical data for this problem are as follows: beam length
L = 100 in., beam height h = 1 in., beam width d = 0.4 in., Young's
Modulus E = 3XI07 psi, the uniformly distributed load f = 0.1 1b/in. for
Case 1, point load at center P = 5 1b for Case 2, and point moment at
center M = -5 in.~-1b for Case 3.

Numerical results are tabulated in Table 4.1, where A denotes the
analytical solution, C denotes the numerical solution using cubic shape

functions, and Q denotes results with quintic shape functions.
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Table 4.1 Comparison of Analysis Results for Simply Supported Beam
Case 1
E;:?t X Vxx Vxxx X Vxx Vxxx

@) 0.} C 0.833E-06 |-0.450E-05 10. {C [-0.458E~04 |-0.450E-05
-0.500E-05%* -0.400E-05%*

Q| 0.000E 00}-0.500E~05 Q | -0.450E~04 [~0.400E-05

A | 0.000E 00{-0.500E-05 A | -0.450E-04 |-0.400E-05

(2) 10. { C | =0.458E~04 |~0.350E-05 20. [ C | -0.808E-04 |~0.350E~-05
-0.400E-05% -0+ 300E-05%*

Q | ~0.450E-04 {-0.400E-05 Q | -0.800E~04 |-0.300E-05

A | -0.450E~04]-~0.400E-05 A | -0.800E-041-0.300E-05

(3) 20. | C | -0.808E-04 |-0.250E-05 30. [ C | -0.106E-03{-0.250E-05
~0+300E~(05* -0.200E~-05*

Q | -0.800E-04 [-0.300E-05 Q {~0.105E~03]|-0.200E-05

A | -0.800E-04 | -0.300E-05 A |-0.105E-03;{-0.200E-05

(4) 30.} C | -0.106E~03}|~0.150E-05 40. | C | -0.121E-03|-0.150E-05
-0.200E-05* -0.100E-05*

Q | -0.105E-03 |{-0.200E-05 Q | -0.120E-03!-0.100E-05

A | ~0.105E-03|-0.200E-05 A | -0.120E-03]|-0.100E~-05

(5) 40. | C | ~0.121E-03{-0.500E-06 50. | C | -0.126E~03|-0.500E-06
-0.100E-05% 0.000E 00*

Q { -0.120E~03 {-0.100E-05 Q | -0.125E-03|-0.740E~15

A | -0.120E-03{-0.100E-05 1A |-0.125E-03] 0.000E 00

Case 2
E;:?t X Vxx Vxxx X Vxx Vxxx
-

(1) 0.} C |-0.486E~16|—0.250E-05 10. | C | -0.250E-04 |-0.250E-05
Q| 0.000E 00{-0.250E-05 Q | -0+250E~04 | -0.250E~05

A | 0.000FE 00[-0.250E-05 A | -0.250E-04 [-0.250E-05

(2) 10.{ C | -0.250E~-04|-0.250E-05 20. | C | -0.500E~04 |-0.250E-05
Q | -0.250E-~04 |—0.250E-05 Q | -0.500E-04 {-0.250E-05

A |-0.250E-04 |-0.250E-05 A | -0.500E-04 |-0.250E-05

3) 20. | C | -0.500E-04 |-0.250E~-05 30. | C | -0.750E-04 |~0.250E-05
Q | -0.500E-04 {-0.250E-05 Q | -0.750E-04 {-0.250E~05

A {-0.500E-04 [-0.250E-05 A | -0.750E~04 |-0.250E-05

(4) 30. | C | -0.750E~04}!-0.250E-05 40.} C | -0.100E-03 |~-0.250E-05
Q | ~0.750E-04 |~0.250E-05 Q | -0.100E-03 |-0.250E-05

A | -0.750E-04 |-0.250E-05 A | -0.100E-03 |-0.250E-05

(5) 40.1 C |-0.100E-03 |-0.250E-05 50.{ C | ~0.125E-03 |-0.250E~05
Q {-0.100E~03|-0.250E-05 Q| -0.125E-03 {-0.250E-05

A }~0.100E~03 |{-0.250E-05 A | -0.125E-03 [-0.250E-05
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Table 4.1 Continued
Case 3
Eég?t X Vxx Vxxx “ X Vxx Vxxx
(1) 0.} C |-0.298E~18 |-0.500E-07 10.{ C | -0.500E-06 |-0.500E-07
Q| 0.000E 00|=~0.499E-07 Q | -0.499E-06 |-0.496E-07
' A | 0.000E 00}-0.500E-07 A | ~0.500E-06 [—-0.500E-07
(2) 10. | € {-0.500E-06 {—0.500E~07 20. | C | -0.100E-05 |-0.500E-07
- Q |-0.499E-06 |-0.515E-07 Q | -0.101E-05 {-0.537E~07
A |-0.500E-06 |-0.500E-07 A | -0.100E-05 |-0. 500E-07
(3) 1 20.| C |-0.100E-05 |-0.500E-07 30.| C { -0.150E-05 |-0.500E-07
Q |-0.101E-05 |-0.383E~-07 Q | -0.146E-05 [-0.207E~07
A |-0.100E-05 {-0.500E-07 A | -0.150E-05 |-0.500E-07
(4) | 30.]C |-0.150E-05 |~0.500E-07 |l 40. | C | -0.200E-05 [-0.500E~07
Q [~0.146E-05 |-0.142E~-06 Q {-0.232E-05|-0.280E-06
A {-0.150E-05 |-0.500E-07 A | -0.200E-05 |-0.500E-07
6)) 40. | C }-0.200E-05 |-0.500E-07 50. | C | =0.250E-05 {-0.500E-07
Q |-0.232E-05| 0.672E-06 Q| 0.369E-17| 0.176E-05
A |-0.200E-05 |-0.500E-07 A | -0.250E-05 }-0.500E-07
Vxx : Second derivative of displacement function V
Vxxx : Third derivative of displacement function V

%*

: Extrapolated values
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Table 4.1 shows that the finite element results are in reasonably good
agreement with analytical solutions, except the following features.

When a cubic shape function is employed for a uniformly distributed
loading condition, third derivatives of displacement have constant
values throughout finite elements, since the order of shape functions is
3. Considering that the shear force of a beam varies linearly, one can
extrapolate these constant (average) values at the nodal points for
uniformly distributed load. Then, these extrapolated values can be the
same as those of the analytical solution. Another feature to note is
that when a quintic shape function is employed for a point moment
loading condition, the second derivatives of displacement at the nodal
points are continuous in adjacent finite elements, which contradicts the

existence of external applied moment.

4.2.2 Finite Element Analysis of a Plate

As in the case of beams, plates serve as structures in their own
right. They also serve as structural components for complex built-up
structures. In plate bending problems, one is required to choose a
method among various existing finite element methods in analysis, since
characteristics of plate are much more complicated than in the case of
beam. A large number of conforming and non-conforming elements have
been used to solve thin flat plate bending problems. 1In most cases, the
simplest nodal degrees of freedom are used; i.e., only displacements and
their first derivatives, as in the case of a beam, and such elements are
admirably suited for an extension to shell problems and indeed to other

1

situations demanding C" continuity.
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Figure 4.5 [73] shows convergence of rectangular and triangular
elements for the case of a simply supported plate under a concentrated,
central load. A process, leading to a necessary condition for
convergence, has been proposed. This process, known as the "patch test"
developed by Irons [83], has first been studied from a mathematical
standpoint by Strang [84], Ciarlet [6], and others.

Consider a simply supported plate subject to bending only, as shown
in Fig. 4.6. A non-conforming rectangular element [73], with sign
convention and nodal order specified in Fig. 4.7, is employed.

The displacement function for a plate, under usual thin plate
theory, 1is uniquely specified once the deflection w is known at all node

points and can be written in general form as

w = Na° (4.5)

where a° contains the element(nodal) parameters a° = [ai,aj,ak,allT,

where
Y1 Yi
3 8% ) ¢ (5_3;’ )¢ (4.6)
eyi ( %% i

The nodal 'forces' corresponding to displacement can be interpreted
as a direct force and two couples, as shown in Fig. 4.7.

It is impossible to specify simple polynomial expressions for shape
functions that ensure full compatibility, when only w and its slopes are

prescribed at nodes. If any functions satisfying compatibility are
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| Figure 4.6 A Simply Supported Plate

Figure 4.7 A Rectangular Plate Element
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found with the three nodal variables, they must be such that at corner
nodes they are not continuously differentiable and the cross derivative
is not unique. This fact is important in calculating shape design
sensitivity of built-up structure that involve plate components. A way
out of this difficulty is to specify the cross derivative as one of the
nodal parameters, regarded as a conforming element suggested by Bogner
et al. [76].
A polynomial expression is conveniently used to define shape

functions in terms of 12 parameters, in which certain terms must be

omitted from a complete fourth order polynomial, as
= + + + 2 + + 2 + 3 + 2 + 2
W= a X Guy + X g Xy oy X agX 'y ag Xy
3 3 3
+ 4 + @)Xy + @) Xy (4.7)

In particular, along lines x = constant or y = constant, the
displacement w varies as a cubic. The element boundaries are composed
of such lines. This characteristic can give complete information to the
ribs (beams) as in the case of a beam-plate built-up structure. Hence,
by taking advantage of cubic shape function over higher order shape
function as in the case of simple beam, one can apply the Hermite cubic
shape function to the plate and related built-up structure problems.

One should note that slope continuity is satisfied only at the nodal
points, not at the element boundaries. This property is important when
cubic shape functions are employed, since one must resort to a technique

such as averaging of slopes at the element boundaries of the plate.
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It is interesting to investigate the behaviour of derivatives of
the displacement function, which are related to the design sensitivities
of built-up structures involving plate components when a cubic shape
function is employed. Taking derivatives of Eq. 4.7 with respect to x

and y, successively, one obtains

v, = a2+2a&x+a5y+3a7x2+208xy+09y2+3a11x2y+a12y3 (4.8)
wy = a3+a5x+2a6y+08x2+2ugxy+3aloy2+allx3+3a12xy2 (4.9)
LA 2a4 + 6a7x + 2a8y + 6allxy (4.10)
wxy = a + 208x + 2a9y + 3a11x2 + 3a12y2 (4.11)
wyy = 2a6 + 209x + 6a10y + 6a12xy (4.12)
LA 607 + 6ally (4.13)
Vixy " 2ag + 6a,,x (4.14)
wxyy = 2a9 + 6a12y (4.15)
wyyy = 6a10 + 6a12x (4.16)

Note that along lines x = constant in fiﬁite element, the bending
monent ﬁx and shear force 6; defined in Table 3.2 vary linearly. The
same argument can be applied along lines y = constant. This linearity
allows one to take numerical advantage discussed for the beam in
pre?ious gection. The mixed derivative wxy varies in a quadratic way,

which is generally evaluated at a plate corner, and needs special
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attention for more accurate evaluations. It is required to use an

appropriate numerical integration scheme to evaluate those values for

design sensitivities, using derivatives of displacement functions of

Eqs. 4.8 to 4.16. This will be discussed in the following sections.
The shape function can be obtained in terms of normalized

coordinates (see Fig. 4.7) as [73]

Ny =g (B + 1D(ng + 12 + & + ng - &2 = D),

ag, (£ + D2(g, - Dy + 1,
bn, (&g + D(ng + DXy - 1]
with §= (x-x)/a, n=(y-y)
8o = B8 s  ny = neny (4.17)

As mentioned earlier in this section, 1t is impossible to devise a
simple polynomial function with only three degrees of nodal freedom that
will be able to satisfy slope continuity requirements. The alternative
of imposing curvature parameters at nodes has the disadvantage, however,
of imposing excessive conditions of continuity. Furthermore, it is
desirable to limit the nodal variables to three quantities only. These,
with a simple physical interpretation, allow the generalization of plate
elements to shells to be easily interpreted. Also computational
advantages arise. The simple alternative is to provide additional shape
functions, for which second order derivatives have non~unique values at

nodes. Providing no singularities occur, convergence 1is assured. The
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21 degree of freedom triangular element is described by Argyris [85],
Bell [86], Bosshard [87], Irons [88], and Visser [89]. The reduced 18
degree of freedom version is developed by Argyris [85], Bell [86], and
Cowper et al. [90]. An essentially similar, but more complicated
formulation has been developed by Butlin and Ford [91] and mention of
the element shape functions 1s made earlier by Withum [92] and Fellipa
[82].

It is clear that many more elements of this type could be developed
and indeed some are suggested in the above references. A full study is
included in the work of Zenisek [93]. However, it should always be
borne in mind that they involve an inconsistency when discontinuous
variation of material properties occurs. Further, the existence of
higher order derivatives makes it difficult to impose boundary
conditions and indeed the simple interpretation of energy derivatives as

'nodal forces' disappears.

4.2.3 Remarks on Gauss Quadrature and Stress Computation
In design sensitivity analysis, one source of poor design
sengitivity stems from numerical integration error in evaluation of
stresses. A definite integral can be evaluated numerically by any of
several methods. Here only the Gauss method [94,95] is described, since
it has proved most useful in finite element work.

To approximate the integral
1= [l e e (4.18)

one can sample (evaluate) ¢ at the midpoint of the interval and
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multiply by the length of the interval, as shown in Fig. 4.8a. Thus,

one finds I = 2¢1- This result is exact if the function happens to be a

straight line of any slope.

Generalization of Eq. 4.18 leads to the formula
1
I=[_) &t = Wpdy + Wydy + oo + W o (4.19)

Thus, to approximate I, one evaluates ¢ = ¢(&) at each of several
locations Ei, multiplies the resulting ¢i by an appropriate weight wi,
and adds. Gauss's method locates the sampling points so that for a
given number of them, the greatest accuracy is achieved. Sampling
points are located symmetrically with respect to the center of the
interval. Symmetrically paired points have the same weight Wi. Table
4.2 gives data for Gauss ruleé of order n = 1 through n = 3. Data for
higher orders can be obtained from most numerical methods textbooks. In
computer work, numerical data for the gi and Wi should be written with
as many digits as the machine allows. In general, a polynomial of
degree 2n-1 is integrated exactly by n-point Gauss quadrature.

In two dimensions, one finds the quadrature formula for

¢ = ¢(E,n) by integrating with respect to £ and then with respect to n
1,1 ., 1
I =[] oCg,mdedn = [ [] W, (g, n) Jdn
i
- JZ Wy [IWgeCeonp] = ) jZ LARCIES (4.20)

In three dimensions, one has

I = fil f.l.l f£1¢(£ n, g)dEdndg = i{fg WinWk¢(Ei,nJ.,;k) (4.21)
j
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(c) three sampling
points

Figure 4.8 Gauss Quadrature Using One, Two, and Three

Sampling Points

Table 4,2 Sampling Points and Weights for Gauss Quadrature
Order n Location €i Weight Wi
1 0. 2.
2 +0.57735 02691 89626 1.00000 00000 00000

+0.77459 66692 41483
0.00000 00000 00000

0.55555 55555 55556
0.88888 88888 88889
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One need not use the same number of Gauss points in each direction, but
this is most common.

It has been shown [96-99] that finite element stress predictions
are least accurate at element corners, more accurate at midsides (or
midface in solid elements), and most accurate at certain interior
points. These interior points can be used to define a stress field that
can be extrapolated to yield stress at element boundaries. A procedure
to obtain optimum points where stresses are most accurate is presented
in Ref. 99.

Table 4.3 1ists optimal points for stress evaluation [100]. Figure
4.9 shows an example of their benefit [96]. 1In Fig. 4.9, the dashed
line denotes correct transverse shear stress under uniformly distributed
load, while the solid line denotes computed shear stress. Optimal
(Gauss) points are denoted by * symbols, at £ = P = + 0.57735 seeee.

One sees that stresses away from the optimal points define a parabola
that is grossly in error. But optimal points define a straight line
that is essentially exact and is a least squares fit to the parabola.

It 1s suggested that stresses will be most accurate when the element
stiffness matrix is generated using the same Gauss points recommended in
Table 4.3 for stress calculation. To extrapolate stresses from Gauss
points, consider a one-dimensional situation, the upper part of Fig.
4.9. 1In the span — P < £ < P one interpolates linearly between the

known stresses o, and ¢

1 ) at stations ! and 2.

1s °1

1-s
o= [ 7 2 02

(4.22)



Table 4.3 Location of Optimal Points for Stress Calculation

Locations: Gauss Rule

Element and/or Coordinates
Beam (Fig. 4.2) 2 point (4+pL/2 from center)
Linear Plane (Fig. 4.10a) 1l point ( £ = n = 0)

Quadratic Lagrange (Fig. 4.10b) { 2x2 ( £ = +p, n= +p)
Quadratic Plane (Fig. 4.10c) 2x2 ( &€ =tp, n = 1p)

Cubic Plane (Fig. 4.10d) 3x3 (9 points; see Table 4.2)

p = 0.55735 02691 89626

A
~ N 1
\&‘5\2_(‘\/\
B
€
-1 -P +P 1

Figure 4.9 Portion of a Beam Modeled a Single Layer of Plane
Quadratic Elements

103
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(a) Linear Plane (b) Quadratic Lagrange
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(c¢) Quadratic Plane (d) Cubic Plane

Figure 4.10 Plane Elements
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where s is the natural coordinate s = £/P, so that s = -1 at £=-P and

s = +1 at £ = +P, Again, P = 0.57735.... To extrapolate to points A

and B, at £ = +1 one sets s = +1/P. Thus, with 0 = ¢, and then

A
g = o, in Eq. 4.22,
1 1
g 1 1 + P 1 - P ol
o. {2 1 1 c (4.23)
B l-i;l-!-'; 2

Stresses OA’

(ox, Gy’ or Txy)' The extrapolation scheme can be applied to the two-

9gs O)» and % each represent one stress component

dimensional case, which is presented in Ref. 100. This scheme will
contribute to improving accuracy of design sensitivity in the next

chapter.

4.3 Formulation of Constraints with Characteristic Functions

In design sensitivity analysis and optimization, stress constraints
are among the most important and difficult to deal with. It isknot easy
to handle stress constraint as pointwise constraints. In this section,
an equivalent functional form of stress constraints with a
characteristic function [5] is presented.

Suppose one has pointwise constraints
¢8(x,u,z,b) <0 ,8=1,2, .e,q, X € Q ' (4.24)

These pointwise constraints can be replaced by the equivalent functional

constraints [101]

¥o = [log+ leghda =0, 8=1,2,.00. (4.25)
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8o that one can reduce the difficulty of handling pointwise constraints
in numerical calculations.

One may get poor sensitivities of the constraints of Eq. 4.25
during design iterations, particularly when violations of constraints of
Eq. 4.24 are small and occur only in some local area of the domain, due
to smearing characteristics of the constraints of Eq. 4.25, This
phenomenon causes much difficulty when design iterations approach an
optimum design, for which violations of constraints are usually small
and occur only in some local area of the domain.

A characteristic function is introduced to cope with the problem,
with the idea that it can be used to reduce the smearing characteristics
described above. A characteristic function 1s a positive, constant
function, defined in a local region QP of Q and is zero outside QP’ with

the property

Mde=1 = fQ M,dQ (4.26)

where MP denotes the characteristic function defined in QP. As the area
of Qp approaches zero, M, approaches the Dirac-§ distribution.

One can transform the constraints of Eq. 4.24 to integral form over
small test cells by weighting ¢B(x,z), B=1,eee,q, with a

characteristic function defined in that region,

Yo = / oM A2 <0, B=1,e00,q, k=1,000,m (4.27)

%

where Qk denotes the domain of test cell k and Q= 91 U 55 U *** y qm.

With this formulation, one can isolate the areas in which violatious
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occur and hence reduce the smearing characteristics significantly by
suitable choice of characteristic functions defined in the test cells.
The scheme is quite useful when one employs the finite element method
for analysis of the system. In that case, each element 1s treated as a
test cell and the characteristic function is approximated by a step
function that is defined inside the element and equal to zero outside
the element. The magnitudes of violations in the elements are weighted

properly and, therefore, give reasonable values of sensitivities.

4.4 Element Boundary Movement Effect for Shape Variation

In the continuous shape optimization method [72], the normal
boundary movement vln s obtained as the result of an optimization
iteration. After each iteration, one can directly move the boundary by
the amount VIn to construct a new boundary. However, in the finite
dimensional shape optimization method, the velocity field V at the
boundary 1s represented by a design parameter vector b and its variation
§b. In this method, 6b is determined as the result of an optimization
iteration and, after the iteration, one generates a new design parameter
vector and constructs a new boundary. Considering that the domain of a
structural component consists of several finite elements, one may
presume that the boundary movement of the structural component causes
element boundary movement. This section introduces development of the
element boundary movement effect that will be tested and used in shape
design sensitivity analysis of built-up structures in later sections.

Let M(x) be a characteristic function on an open region Q,<Q with

i

smooth boundary T, such that fQ M(x)dQ = 1, where M = I/IQ dQ on @ and
i
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M =0 on Q\ﬂi. Then one has, on domain Qi’

1 1
fni(r) dg fsz d

M(x) = lim - 1
70
[q (048 - fsz 49
= - lm (— T i ]([ clmfdsz)
70 Qi(t) Qi
T
= - sz VndT
y
1 ] 1 ]
=M (x) + M)V = M (x) (4.28)
since M is constant on Qi.
Now consider the stress comstraint
$(o) <0 (4.29)

The functional form with the characteristic function M is

¥ = IQ¢MdQ = fﬂiwdng 0 (4.30)

Taking material derivative of Eq. 4.30, using Eq. 4.28, yields

¥

/ ¢'MdQ+f ¢M'dsz+f #MVIndT
&y 1 Ty

[]

fQ4>'Mdn - szr va:lr[s2 oda + [, MV ndr (4.31)
i 1 i
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4.5 A Sparse Matrix Symbolic Factorization
Technique for Iterative Analysis

In built-up structure optimization, one must solve the state
equation of the system and adjoint equations that have exactly the same
form, with different loads, repeatedly with the finite element method to
calculate design sensitivities in each design iteration. This procedure
is continued until one obtains an optimum design. In each design
iteration, one constructs the global stiffness matrix, factors the
matrix, saves the factors, and solves the equation with different load
vectors, using forward-backward substitutions.

Since factorization of the matrix takes a major portion of the
computation time, it 1s necessary to employ techniques to reduce this
factorization time in each design iteration or to generate and store
data that can be used in all design iterations and eliminate several
steps of factorization in each design iteration. For the former, the
bandwidth technique, the skyline technique, or various large matrix
handling techniques [102] are conveniently employed. For the latter, a
sparse matrix symbolic factorization technique [103] is highly
desirable, because it does not require selection of the best node
numbering sequence for minimum bandwidth of the global stiffness
matrix. When this technique is combined with an iterative optimization
algorithm, data generated by the symbolic factorization process can be
used in all design iterations, which results in a substantial reduction
of factorization time, provided that one maintains the same pattern of
the global stiffness matrix during design iterations. This technique,

which 1s used extensively in numerical calculations for optimal design
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of built-up structure in Chapter 5, is briefly discussed in this
section.
Consider a structure that is partitioned into n finite elements and

a matrix equation for the entire structure, of the form
Kz = £ (4.32)

where z 18 a vector of independent generalized displacements, obtained
by elimination of degrees of freedom specified by boundary conditions of
the structure, f 18 a corresponding vector of equivalent nodal forces,
and K 1s symmetric, positive definite, sparse structural stiffness
matrix that is to be constructed from element stiffness matrices Ki,
1=1,2,3,¢++,n. If the local coordinate systems are parallel to the

global coordinate system, one has

n T
K=1) ct xict (4.33)
1=1

where cl are boolean matrices, each of which has only unit element per
row and the rotation matrices are presumed to be identity matrices. 1In
Eq. 4.33, one sees that a nonzero entry in K is equal to a sum of
nonzero entries in Ki.

The sparse matrix symbolic factorization technique starts from a
preprocessing step to define pointer arrays that will be used in
structural analysis to construct the matrix K from Ki, reorder the array
containing the nonzero entries in the lower triangular part of X, and
numerically factor a symmetric permutation of the matrix. Generation of

these pointer arrays 1s considered as a symbolic factorization, since it
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is equivalent to choosing a permutation matrix P and reordering the
matrix elements for storage by columns in L, where L is a lower
triangular matrix that is obtained from factorization of K to the form

LoLT

» with D a diagonal matrix. It allows one to factor PKPL into LDLT,
given only the zero/nonzero pattern of the matrix K and not the
numerical values of the nonzero entries in K.

It is worth noting that, by virtue of the pointer arrays, one does
not have to select the best node numbering sequence for minimum
bandwidth of K. It is also worth noting that 1f the zero/nonzero
pattern of K 1s not changed during design iterations, only one
preprocessing step is necessary and the pointer arrays can be used
repeatedly in every design iteration, which results in substantial
reduction in computation time for the iterations.

After the preprocessing step, one can supply numerical values of
the nonzero entries in K for numerical factorization. This is done,
upon generation of each K1 and elimination of degrees of freedom
specified by the boundary conditions of the structures, by supplying
only nonzero entries in the lower triangular part of ki, One then
performs a numerical factorization of the symmetric permutation of K
into the form LDLT. For a given load vector f, one can perform forward
and backward substitutions to calculate K lf. With the factored form of
K saved, one can continue solving equations with a different load
vector f,

The sparse matrix symbolic factorization technique explained above

can easily be adapted to iterative optimization algorithms, as shown in
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Fig. 4.11. The preprocessing step, which requires large storage, is
executed just once as long as the pattern of K is not changed; i.e., as
long as the connectivity of the finite elements is preserved. For
optimization problems in which design changes affect only a few
elements, one can further save computation time and store space.

The method presented in this section has been succesfully applied
to optimal design of a built-up structure problem in Chapter 5. For the
preprocessing step, numerical factorization, and forward and backward
substitutions, various subroutines of the Harwell Subroutine Library
[104] are called. For detailed information of the method and usage of
the subroutines, the reader is referred to Ref. 103.

4.6 Design Sensitivity Analysis of a Beam-Truss
Built-Up Structure

Numerical results of design sensitivity analysis for the beam-truss
built-up structure of Fig. 3.la is obtained, based on the analytical
formulas of design sensitivity analysis derived in Chapters 2 and 3 for
fixed or variable domain.

The finite element method, using cubic shape functions with an
extrapolation scheme for accurate evaluation of the third derivatives of
displacement function at the nodal points for uniformly distributed load
has been employed. Conventional and shape design sensitivity forms are
obtained separately. In shape design sensitivity calculations, it is
presumed that the conventional design u (widths and heights of the beam
elements) is suppressed and the outside boundaries are fixed; i.e., only

the position of the truss can move with velocity V. Simultaneous
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changes of conventional design and shape can be applied as a simple
combination of the two separate cases.
Consider a stress constraint functional defined in Qa
v = [ oMdQ (4.34)
Q2

where o is bending stress, defined as
o= -"—2z (4.35)

and M is a characteristic function defined on each finite element
in Qa.
One can treat Eq. 4.34 as the functional form of Eq. 2.63 and the

adjoint equation is, from Eq. 2.70,

Eh 3 Mdgq (4.36)

a(x,i) = —f 2 xx

Q2
for all A €Z, where Z is the space of kinematically admissible
displacement fields. Equation 4.36 has a unique solution ), which is
the displacement due to load -(EhM/2)xx in the region where the
constraint functional i1s defined. That is, with smoothness assumptions,

the variational equation of Eq. 4.36 is equivalent to the formal

operator equation

EI2) =- =M, xeg?
XX XX XX

(4.37)

(EIb)\zx)xx =0 , xe

where A satisfies all the boundary and interface conditions of

Eqs. 3.23, 3.33 and 3.34 in Tables 3.1 and 3.3. Therefore, the
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conventional design sensitivity is, from Eq. 2.72,

|

= - E - At
Ve = an 7 Zxx 149 aGu,Q(z’A) (4.38)
where
' - a a .a b b .b
asu’n(z,x) fga (EIeazxxAxx)dQ + fgb(EIeb Z o d 10 (4.39)

where e = [d,h]T and d(h) is width (height) of the beam. The shape

design sensitivity is, from Eq. 3.89 with f2 = fb,

p_ = [E1%(2

a a a a
s A - )

a ,a _ 2
XX XX XXX X% XXX X

- EIb(zb L L b)]v|
XX XX

z (4.40)
xxx“x xxx X

Y

Considering the element boundary movement effect of Eq. 4.31, one

may write the shape design sensitivity of Eq. 4.40 as

v oo a,a.,a _ a .a_.a _a
b [EL (zxxxxx 2 exx"'x xxxzx)
b, b .b b b b b
-EI (zxxkxx - zxxxAx Axxxzx)]VIY
+ (sz Eh , daa-En, M)VE (4.41)
Qa 2 XX 2 XX I,e
_ M

where V€ is the velocity of the element boundary that {is presumed to be
proportional to the velocity V of the component boundary, depending on
the position, and Fﬁ denotes the boundary of .the element where the

characteristic function M is applied.
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Special attention is required for the case in which the element

boundary P; coincides with the interface y, where Eqe. 4.41 needs to be

modified.

Rewriting the adjoint equation of Eq. 4.36, one has

1.4 -1 Eh ~a
YO BTN da=- [ =232 Mg (4.42)
i=a,b Qi XX XX Sf 2 XX

for all A €z. Integrating terms in Eq. 4.42 by parts ylelds

RS 1(EIiAi ). e+ [eth! it - @il ii]' i}
XX~ XX XX X XX X 'y
i=a,b Q
- - Eh Ja _Eh -a E ~a
"G e - R e G | (4.43)
where I‘1 i1s the outside boundary of the beam component i. With
smoothness assumptions, the variational equation of Eq. 4.42 is
equivalent to the formal operator equation.
a,a _ _ (Eh a
(EI )‘xx)xx = (2 M)xx , Xe @
(4.44)
b,b b
(BI°A ) = O , Xe Q
zi = zi = Ai = Ai =0 , X € Fi, i =a,b (4.45)
X X
a b
z =z
a b
z =z
X X
y Xe ¥y ' (4.46)
A =P
A2 =P



Er%z® = g1P,P
XX XX
X €y
a a _ b b - _EA
(EI zxx)x (EI zxx)x - q
Er®a® - grP)b - - Eh
XX XX 2
a,a b.b - _EA _ Eh
(EI Axx)x (E1 Axx)x = - s (2 M)x
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(4.47)

(4.48)

Note that the conditions of Eqs. 4.45 to 4.47 are the same as those of

Eqs. 3.23, 3.33, and 3.34, respectively. In Eq. 4.48, another set of

jump conditions for the adjoint variables, which are

different from

those of Eq 3.34, are obtained, due to coincidence of the element

boundary with the interface vy. Then, with the element boundary movement

effect and coincidence of the element boundary with the interface Y,

Eq. 3.10 becomes

. 1 1, 1 i 1
7 L LB GID, s e Gl
i=a,b @
i i Eh a
- 20N + G e
11 14 4.1
+ 7 (£°X° - EI"z__A_ )V '
i=a,b XX riuY
+ (sz a gh zixdﬂ - %h zixM)Ve
8 M

Integrating terms in the domain integral of Eq. 4.49

=7 1[(EIiAi

a t=a,b @ XX xx'Ux

i i

i, .41 Eh a
SO + GG (*]de

i, 11 i i1 i i
+ -
+ z [EI (sz )xlxx El z (Xx \ )x (EX

i=a,b

). (zvly + (et fzm ;(xuivi

(4.49)
by parts, one has

)

i.1 i 1
Axx)x(zxv )
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i1 i1 i1 i1 1 i
(EI zxx)x(AxV ) + (£ - EI zxxxxx)v ]

Eh ., a.a _ ¢(Eh a,a
t3 (sz )xM ( 2 M)x(zxv )

2 Eh a Eh a e
+ (M fﬂa 7 Zgd® -5 2 MV e (4.50)

M

From the formal operator equations of Eqs. 2.1 and 4.44, one
obtains the shape design sensitivity by imposing the interface
conditions of Eqs. 4.46 to 4.48, with f2 = fb, as

a Aa _ 48 za)

p' o= [E1%(z2 22 -
a XX XX XXX X XXX X

- EIb(zb.Ab - zb Ab - Ab zb)]V'
xx " xx XXX X Y

XXX X
Eh a _a 2 Eh a Eh a e
ooz UM+ (M an 7 Zod® T gz MV (4.51)

M
Noting that the velocity V€ is the same as the velocity V2 at the

interface y, one can obtain the final shape design sensitivity as

P! o= [EIa(za Aa - 22 3@ _,2 za)
a XX XX XXX X XXX X
- EIb(zb Ab - zb Ab - Ab zb)]V'
XX XX XXX X XXX X Y
2 Eh a e Eh a e
+ M a3 Zgdov e G~ 2 MV (4.52)
& M MY

Comparing Eq. 4.52 with Eq. 4.41, one notes that coincidence of the
element boundary with the interface y causes the last term of Eq. 4.41,
evaluated at the interface y, to be dropped. Similarly, one can apply
the above argument to the outside boundary T of the structural compounent
and obtain the same form as Eq. 4.52, by dropping the last term

evaluated at the outside boundary T.
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Numerical calculations of design sensitivities are carried out to
check the design sensitivity agreements between actual changes of
congtraint values (average stresses) and predictions.

The finite element model used is shown in Fig. 4.12. A total of 11
finite elements and 20 degrees of freedom are used to model the beam—
truss built-up structure, including 10 beam elements and 1 truss
element. The 11 finite elements are linked to two conventional design
variables (heights and widths of the beam elements) and one shape design
variable (supporting position of the truss).

The input data used in this calculation are as follows: elastic
modulus E = 3 x 107 psi, beam length £ = 100 in., uniform height (width)
of beam element h = 1 in. (d = 0.4 in.), cross-sectional area (length)
of truss element A = 5 in. (2 = 50 in.), the original position of the
supporting truss X = 0.52, and uniformly distributed load
f = 0.1 1b/in. on the beam.

Comparisons of design sensitivity calculations with the actual
changes of constraint values after design modifications and the
predictions for bending stress constraints of Eq. 4.34 are summarized in
Table 4.4 for fixed domain and in Table 4.5 for variable domain,
respectively. In Tables 4.4 and 4.5, ?l represents the constraint
values at initial design, AY represents the actual changes of constraint
values after design modifications, and 6&¥ répresent design sensitivity
predictions. The last columns in Tables 4.4 and 4.5 denote the design
sensitivity agreements in % between actual changes and predictions,

defined as &¥/AY x 100. In conventional design sensitivity comparison,
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Figure 4.12 Finite Element Model for Beam-Truss Built-Up Structure
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Table 4.4 Conventional Design Sensitivity Comparison for

Truss—-Beam Built-Up Structure

Element ¥ AY 8Y¥ 8¥/0¥
no. 1 9
(%)
1 | 0.1156E 03 -0.1575E 02 -0.1734E 02 110.2
2 | 0.2469 03 -0.3362E Q2 -0.3703E 02 110.1
3 | 0.2281E 03 ~0.3106E 02 ~0.3422E 02 110.2
4 | 0.5940E 03 ~-0.8083E 01 -0.8905E 01 110.2
5 |0.2593E 03 0.3532E 02 0.3891E 02 110.2

Table 4.5 Shape Design Sensitivity Comparison for Truss—Beam

Built-Up Structure

Element
no.

AY

8¥ (8§¥/AY)

SY(8Y/AY)

CWONOTWVHWN -~

[

0.1156E 03
0.2469E 03
0.2281E 03
0.5940E 03
—-0.2593E 03
~0.2593E 03
0.5940E 03
0.2281E 03
0.2469E 03
0.1156E 03

0.1630E
0.3866E
0.4565E
0.3726E
0.1349E
_00 1901E
-0.4024E
-0.4685E
—0.3884E
~0.1620E

02| 0.1500E 02(92.0%)
02} Q.3375E 02(87.3%)
02| 0.3750E 02(82.1%)
02 0.2625E 02(70.5%)
02} 0.2347E-05(
02 |{~0.2347E-05(
02|-0.2625E 02(65.2%)
02 |-0.3750E 02(80.0%)
02{-0.3375E 02(86.9%)
02 |-0.1500E 02(92.6%)

0.1688E
0.3938E
0.4688E
0.3938E
0.1688E
-0.1688E
-0.3938E
-0.4688E
-0.3938E
~0.1688E

02(103.5%)
02(101.8%)
02(102.7%)
02(105.7%)
02(125.1%)
02( 88.8%)
02( 97.8%)
02(100.1%)
02(101.4%)
02(104.2%)
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results for only half of the entire elements, due to symmetry of the
structure, is tabulated in Table 4.4, with 5% uniform change of design
variables. Table 4.4 shows good agreement of about 110% between actual
changes and predictions for all elements. Table 4.5 shows the shape
design sensitivity comparison with 5% change of shape design variable
(position ;). When the position x moves with velocity V, it is assumed
that each finite element domain also moves with a velocity V; that is
proportional to V, depending on the position, and the element boundary
movement effect (Eq. 4.41) can apply. Particularly for calculating the
desigﬁ sensitivities for stress constraints defined on elements 5 and 6
of which boundaries coincide with the interface, Eq. 4.52 is used. 1In
Table 4.5, the values in the column for &% shows the design
sensitivities by prediction without modification of third derivatives of
the state variable.

Sensitivity predictions obtained for &Y in Table 4.5, using
Eq. 4.52, show reasonably good agreement with actual changes, except in
the 5th and 6th elements. However, using the extrapolation scheme for
calculation of third derivatives of state variables (for uniformly
distributed load) discussed in Section 4.2.1, one can obtain better
sensitivity agreement of 88-125% as shown for &Y in Table 4.5.
These arguments and numerical tests provide the potential for design
sensitivity calculations of a truss-beam-plate built-up structure, which

is treated in Chapter 5.
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CHAPTER 5

OPTIMAL DESIGN OF A TRUSS-BEAM-PLATE BUILT-UP STRUCTURE

5.1 Introduction

The design sensitivity analysis method developed in Chapters 2 and
3, with the aid of numerical methods discussed in Chapter 4, is used
with a nonlinear programming method to iteratively optimize design of a
truss-beam-plate built-up structure. Minimum weight will be sought,
with constraints on compliance, displacement, stress, and natural
frequency and bounds on design variables.

The variational formulation of system equations is presented in
Section 5.2. The optimal design problem is formulated in Section 5.3
with the cost and constraint functionals defined. In Section 5.4,
design sensitivity coefficients of the cost and constraint functionals
for compliance, displacement, stress, and eigenvalue are obtained, using
results from Chapters 2 and 3. The optimal design problem is solved
using the linearization method of optimization [105]). Numerical results

are presented and discussed in Section 5.5.

5.2 Description of System and Variational Formulation

A beam-plate built-up structure is supported by four 4-bar trusses,
as shown in Fig. 5.1. A uniformly distributed load is applied to the
plate components. The points supported by the trusses are at the
intersections of two crossing beams nearest to the free edges of the

structure. It is assumed that no external loads act on the beam and
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Figure 5.1 Truss-Beam-Plate Built-Up Structure
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truss components and no external torques act on the beam. The plates
and beams are assumed to be welded together. No dissipation of energy
between plate and beam components is presumed to occur during bending
and torsion. The derivation of state equations for the plate and beam
is based on classical small-deflection theory [106].

Dimensions of the structure and the numbering and spacing of beams
in both directions are shown in Fig. 5.1. Coordinates of intersection
points of beams and plates are supposed to be in the mid-planes of the
plates and neutral axes of the beams. The coordinates of intersection

points are then

X, = X + a, , i=1,...,n {5.1)

Yj = yj"]. + bj ’ j = l,“',m (502)
Xy =y, =0 (5.3)
X =1L = L (5.4)

where n(m) is the number of transverse (longitudinal) beams, ai(bj) is
the distance from the (i-1)th to the ith transverse beam (from the
(j-1)th to the jth longitudinal beam), and Lx(Ly) is the dimension of
the entire structure in the x(y)~-direction.

Suppose applied loads are given as

f1 2oty L ot = e nt, o= 1,ee.,mel (5.5)

where f1J is defined as a uniformly distributed load on the plate and
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Q.}j = (xi—l’xi) X (y‘]-l’yj)’ 1= 1”":n+1» j = 1""!m+1 (5'6)
ij_ = s =

92 - (Xi_l,xi), yj ’ i = 1,0.0,n+1’ J = 1,..¢,m (5.7)
1i

93 =%, (yj—l’yi) sy 1= 1,e00,n, 3 =1,...,mkl (5.8)

are domains of plates, longitudinal beams, and transverse beams,

respectively. Define Fij as the boundary of Q;j, k=1,2,3. Then, QiJ

2
and Q;j are regarded as parts of rij. The superscripts i and j used in
Eqs. 5.5 to 5.8 can be applied to the design variables and state
variables to identify those values in each component .

The design variables for this built-up structure are the thickness
tij(x,y) of each plate component, the width 3ij(x) and height
gij(x) of each longitudinal beam component, the width &ij(y) and
height ﬁij(y) of each transverse beam component, the constant cross-
sectional areas Aij(i=l and n, j=1 and m, k=1-4) of the 4-bar truss

members, the positions §1(1=1,...,n) of transverse beams, and the

positions ;j(j=l,...,m) of longitudinal beams. 1In vector form, this is
3 ~ ~ ~ Ai i ~i ~ o i 1.
u = (tiJ, dij, hij, dij, h j, Akj, X, yj) L (szlj) x L”(sz)

x Lw(Q;j) < L“(g;j) x L“(sz;j) x RHY <’ x ™ (5.9)

It is presumed that the lengths of trusses are fixed, but that they may
change their ground positions and that the outside boundary of the
entire structure is fixed; i.e., only the locations of beams are

variable.
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The state variables for this built-up structure consist of the

1j

of each plate component, the displacement

h|

displacement function w

13 and the rotation 61

function v of each longitudinal beam component, |
the displacement function ;ij and the rotation 5ij of each transverse
beam component, and 12 nodal displacement coordinates q;j (i=1 and n,
j=1 and m, and k=1-3) of truss members.

In vector form, the state variables are thus

z = (wija ;ij’ ’é’ijy ‘;ijs aij’ qu(.j)

(5.10)

Kinematic boundary and interface conditions are prerequisite for
use of the principle of minimum total potential energy or the principle
of virtual work and for design sensitivity calculations, since the
displacement fields must satisfy kinematic boundary and interface
conditions.

Consider first the kinematic boundary conditions at the interfaces,
since there are no kinematic boundary conditions at the free edges. At
the interfaces between plate components, the lateral deflections of the

plate and beam components are the same. For longitudinal beams,

SR I . 1

w ’ i=1,-..,n+]., j=1,.oo,m (5.11)

and for transverse beams,

13 13 _ 1+1,]

v =W ,i=l,ooo,n ’ j=1,-uo,m+1 (5.12)

The normal slopes of plate components are the same as the torsion

angles of beam components that are attached at the interfaces of open
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intervals. For plates and longitudinal beams,

LR w;j =Wt L, =1, (5.13)

y

and for plates and transverse beams,

ol _ 13 _ 14,3

. . , 1=1,ee0,n, J=1,00.,ml (5.14)

The torsion angles of transverse beams and axial slopes of

longitudinal beams must be the same at intersection of two beams; i.e.,

pld . §11 . Fi*l.d £=1,000,m, j=1,c00,m (5.15)

Similarly, the torsion angles of longitudinal beams and axial slopes of

transverse beams must be the same at intersection of two beams; i.e.,

CRt I IS L R SR T TS B (5.16)

It 1is assumed that each lateral displacement is evaluated at the
middle plane of each plate and the neutral axis of each beam. Then, the
lateral deflections of two crossing beams and trusses must be the same

at the intersection points; i.e.,

~13

Ji . ;i+1 ]

v vi’j+1

i = 1,--.1‘1, j = 1,.oo,m (5-17)

Aij

ey

13 13

RN NS ay) v1=1landun, j=1andn (5.18)
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With the assumption that there are no in-plane (axial) deformations
in the plates (beams), the plates and beams resting on the four 4-bar
trusses are presumed to move as a rigid body in the plane of the
plates. Referring to Fig. 5.2, one can obtain relationships between
horizontal displacements. Defining the position of point 1 in Fig. 5.2,
after deformation, as [(x1+qil), (y1+q;1)] and the rotation angle as o,
the coordinates of positions of points 2, 3, and 4 in Fig. 5.2 can be
identified as follows:

1 For point 2,

11 nl
X, + q; + (xn - xl)cosw =X + q,
| (5.19)
i 11 1
} ¥, + a, + (xn - xl)sinw =y + q;
For point 3,
11 L Im
X, + q, - (ym - y1)81nm =X, + q;
(5.20)
11 1m
yy ta, + (y, - y,)cosuw Yo t 99
For point 4,
_— + (x_ - x,)cosw- (y_ -y )sinw=x +q™
T Xp T Xp/cose = Ay, TV X T 9
(5.21)
11

- nm
vy, ta, + (xn - xl)sinw + (ym yl)cosw Vo * q,

Assuming that the rotation angle w is small, sinw = w and
cosw ~ 1. With this approximation, the system of equations of Eqs. 5.19
to 5.21 yields the following relationships among the unknown parameters

11 11 nm
ql’q2’andql'
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Figure 5.2 Horizontal Displacement of a Truss—Beam-Plate
Built-Up Structure
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(5.22)
¥y (5.23)
(5.24)
(5.25)
¥,) (5.26)

One may now define the set Z of kinematically admissible

displacement fields as follows:

7= (z= (o, 1§ o1 i3 1

Im

2, 1
y 879, vi-, 8 )qk)qk)qk’qzm)eﬁo(nlj)

x Hg(ﬂ;j) x Hé(ﬂ;j) x HS(S%j) x Hé({éj) x R3x R3x R3x R3 s

such that all the boundary conditions of Eqs. 5.11 to 5.26

are satisfied}

(5.27)

Now consider the natural boundary conditions at the free edges and

interfaces of plate components. At the four free edges, the bending

moments and vertical edge forces are zero.

the free edges,

M=o
X

1= 0 and n+l, j = l,oo',m+1

vil .o
X

For the plate components, at

(5.28)
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M;j =0
i=1,...,n+l, § = 0 and m+l (5.29)

vl .o
y

where M, Voo My, and Vy are defined in Table 3.2.

For the beam components at the free edges,

.o
x
1 =0 and n+1, j = l,.-.,m (5.30)
.o
x
Ve
y
i=1,.e,n, j =0 and mtl (5.31)
V.o
y

~

where M R v , M , and V are defined in Table 3.2.
x> x’ 'y y

At the interface of open intervals between plate components, the
difference of effective shear forces [106,107] between adjacent plate
components acts as the load on the beam component attached, while the
difference of bending moments between adjacent plate components acts as
the twisting moment on the beam component attached. For transverse

beams,

Mij _ Mi+1,j - _GJvij
X X Xyy
1= 1,'¢o,n, j = l,-o',m+1 (5-32)

vij _ Vi+l,j - —(EIvij)
X b yy'yy

Similarly, for longitudinal beams,

M;j Y R A .
f=1,00e,0tl, J = 1,eee,m (5.33)
13 4,341 _ _ 1)
Vy Vy (Evax)xx
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where G is shear modulus and J(J) is the torsion constant of longi-

tudinal (transverse) beam component.
At intersection points of crossing beams, relationships between

corner forces of plate components and shear forces of beam components

are
v LD 0 TR DS O L JPURE 25 I, 15 P j ~1+1 LI gh It o (5,34
xy " xy Xy xy y y

where Mxy 1s defined in Table 3.2.

The variational equation of Eq. 2.39, for static response, becomes

n+l m+l
=y = i3,,.13 ijy,-1i3 , =13
au’g(z,z) = 121 jZl ffnij D [(wxx + wyy)(wxx + wyy)
+(1- \,)(2wijwij e RS b v)lag
y Xy @ XXyy yy xx
n+tl m .
+ 110, SV j"ij + GJG'iJ"iJ)an
i=1 j=1 nz Xy xy
n wtl
*14 “ij ek "ij
* 121 jzl I j(EIV YY XY xy)d93
T T _ T _
+ gl! K(A;I)Eil + qi‘“ K(A];“)qim + qzl K(A‘;l)qzl
T
+ q;m K(At;m)a;m
n+l mtl
15-1 -
- 121 jzl I 4 £9Hag, - b, (@ (5.35)

l
Similarly, the variational eigenvalue equation of Eq. 2.45 becomes [108]
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n+l mt+l
a (v, =l ¥ [f, . ettytigliag
u, 1=1 j=1 913 !

n+tl m

# 1D S CeAHRMGUR L ptis o
1=1 j=1 92 yoy

n mtl Ay s AjzagsA
P 1T dURNSIY L P

1=1 j=1 93

11 11 11 -11 nl nl nl -nl
FoAS Y et A 2T Y Y

(5.36)
Im Im Im -1m nm nm_nm —nm)] _

+A 2y, vy, +tA 2

g *2 Yk Yk g Yk Yk SN 52

5.3 Formulation of the Optimal Design Problem

Minimum weight design of this truss-beam-plate built-up structure,
subject to constraints that arise in most structures, is considered.

Volume of the built-up structure is the cost functional to be minimized,

n+l mtl n+l m
1 i
¥ = 121 Iy jdﬂl + 110y 5d h jdﬂz
j=1 9 i=1 j=1 92
n m+l ne s A 16
+ 110, 13h13d93 +1 A, (5.37)
1=1 j=1 93 1=1

where Ai(zi) is the cross—sectional area (length) of the ith truss
menmber.

The design problem is to find the optimum distribution of design
variables to minimize WO, subject to the following constraints:

Compliance Constraint;

ntl mtl
= 11 Il a0 - m <o (5.38)
1=1 3=1 '@

where FW? is the maximum allowable value.
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Digsplacement Constraint;

~~ odg a
v, = |[[ . 8(x=x)w dal - z°< 0 (5.39)
2 1j -
Q
1
~ o3 .
where x Eﬂl is a fixed point, &(x) is the dirac measure in the plane

acting at the origin, and 2z2 is the maximum allowable value.

Stress Constraint on Plate Elements;

The maximum stress for a thin plate occurs on the surface of the

plate and is given in the form [107]

Et
o = - ———m (W _ + w_)
XX 2(1_\’2) x=x yy Q?
Et
fo] =————-———(w +W) (5-40)
yy 2(1-v2) 4 o
= - Et
Txy 1+v wxy

The Von-Mises failure criterion is [107]

2 2 2 1/,
¢(o) = (oxx + oyy + 3Txy g o )

%y (5.41)

One may transform the above pointwise constraint to integral form over
plate finite elements, by weighting the stress field with a
characteristic function. The averaged constraint on ¢(o) in this small

region is

Y, = oM da - 6> <0 (5.42)
37 Iy g 00, » §
8
where Mp is a characteristic function that is defined on each plate
1.3
element of Qlo 0 and is zero outside that plate element and c: is a

given allowable yield stress.
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Stress Constraint on Beam Elements;

The bending stress functional over beam finite elements is obtained
by weighting the stress field with a characteristic function defined in

that region as

- _ a
v, = [ 5. OpMpdR — oy <0 (5.43)
0-0
)
where My, is a characteristic function that is defined on each beam
1.3
element of 920 and 1s zero outside that beam element, o: is the given
allowable stress on the beam element, and % is the bending stress,
defined as
Eh ~

Similarly, stress constraints on transverse beam elements can be defined
as in Eq. 5.43.

Eigenvalue Constraint;

The natural frequency bound must be met by the structure,

s =%y~ ¢ <0 (5.45)

where 7 = wz is the computed smallest eigenvalue and qo is the lower

bound.

Design Variable Bounds;

L u

t1 < ti < ti , 1 1,004,NE (5.46)
L u

d, <d, <d , = ],.0¢,NB 5.47

hy < ho<hY k= 1,...,NB (5.48)
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As < All < A: » = 1,..,,NT (5.49)
L u .
xi < xi < xi ’ i = 1”0"‘:‘ (5650)

2 u
yj < yj < yj y J = 1l,e0e,m (5.51)

where NE is the number of plate elements, NB is the number of beam
elements, NT is the number of trusses, n(m) is the number of transverse
(longitudinal) beams, the superscript £ denotes lower bound, and the

superscript u denotes upper bound.

5.4 Design Sensitivity Analysis

Design sensitivity analysis results of Chapter 2 and the shape
design sensitivity technique of Chapter 3 are employed directly to
obtain design sensitivity forms, with both design and shape variations,
for the present model. Design derivatives of cost and constraint
functionals considered in Section 5.3 are obtained. As discussed in the
preceding chapters, the procedure for obtaining static design
sensitivity, using the adjoint variable method, is identical with ouly a
different adjoint load functional that depends on constraints. For the
compliance and eigenvalue constraints, it is not required to introduce
an adjoint variable.

The design derivative of the cost functional of Eq. 5.37 is

calculated directly as
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' nt+]l mtl ntl m » o
o= 1 1 [y ectde 4 ] ] fi; @I+ §1a3M)ag,
1=1 j=1 @i 1=1 3=1 ol
n mtl N - ” N 16
+ ) 1 gy @atd s weithan + 1 .,
1=1 §=1 "} 1=1
n ml T ntl m T
+ 101 [gytPeathar + 7 7 g @HEH @
=1 j=1 1, =1 =1 1
n mtl apga T ..
) [y a9t athary (5.52)
=1 3=1 "1}

Consider first the design derivatives of the displacement

~ A
constraint of Eq. 5.35. Since 6{x-x) in Eq. 5.3% is defined on
1,3

neighborhood of 910 0

Thus, one can treat Eq. 5.39 as the functional form of Eq. 2.63 and the

0

- At A
by zero extension and x is fixed, 6§ (x-x) = O.

adjoint equation is, from Eq. 2.70,

a(A,%) = [, 3 8(x-x)wdQ (5.53)
Q 0-0
1
for all 1 €Z. Equation 5.53 has a unique solution A, which is the

displacement due to a unit load at x. That is, with smoothness
assumptions, the variational equation of Eq. 5.53 is equivalent to the

formal operator equation

i
1

1.3 1.3 A A j
D 0 OV4 w 070 8(x-x) , x €Q 070
L (5.54)
pHveld 20, xe nfj\nlo O ml,.ii,ntl, g=l,...,mbl

where ) satisfies the boundary and interface conditions of Eqs. 5.11 to

5.34,
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Once the adjoint variable is obtained by solving Eq. 5.54, one is
in a position to evaluate the final design sensitivity forms of Eq. 2.72
for this displacement constraint as a combination of conventional and
shape design sensitivities. The conventional design sensitivity, the
first bracket of Eq. 2.72, is simply the explicit design derivatives of
the constraint functional, load functional, and the variational equation
of Eq. 5.35. For the shape design sensitivity, the second bracket of
Eq. 2.72, a unified method for shape design sensitivity analysis can be
employed as in Chapter 3 to obtain the final shape design sensitivity
forms. Since the constraint and load functionals are independent of

design variables, the final design sensitivities can be written as

¥, = - adu’g(z,x)
n+l mtl T
+ z z ‘fij A}j(Z)X)Vij nide‘
i=1 j=1 Pl
ntl m T
2T py Gort et
1=1 j=1 T,
n mtl T
+1 1] 13 l\é‘j(z,x)vij atar (5.55)
1=1 3=1'Ty
where
nt+]l mtl
' - 13 i} 1jy,-13 . -1j
asu,sz(z’k) = 121 jZ'I Ifgij Dtij{(wxx + wa)(wxx + wyy)
1

+ (l—v)(2w1j;ij S b wij&ij)]dn
Xy Xy XX yy yy xx 1
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LT ] 3] 19743
z z f (EI vxxvxx + GJ i )dg2

1=1 §=1 92 p13 3 xy

+ 110, (EI 1j S GJ{i 13 1j)cm (5.56)
1=1 j=1 9 Vyy' yy 3 xy Xy
b = [d,h], b = [d,h], and
A(z,)) = D{wxxwxx - wyywyy - (wxxx+ xyy)wx - (wxxx + vwxyy)wx}
at x = x,, i=1+-n (5.57)
A, (z,}) = D{wyywyy- LA (wyyy + vwxxy)wy - (wyyy + vwxxy)wy}
at y yj, i=1-m (5.58)

Az(z,x) = Evavxx - (Evax)xv - (EIv ) v + GJv xyvxy

at x = X5 i=1-n (5.59)
A(z,)) = EIv_v - (EIv ) v - (EIv )y + Glv v
32,2 Yy vy ( Y'yy yy Xy

at y = yj sy jJ=1-m (5.60)

For the design derivatives of the compliance constraint of

Eq. 5.38, one notes that the integral of Eq. 5.38 depends on the load

£13, However, since £13' - 0, one can treat Eq. 5.38 as the functional

form of Eq. 2.63. Therefore, the adjoint equation is, from Eq. 2.70,
n+l mt+l

a, = § T ff, fij; dQ (5.61)
i=1 3=1 o)
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for all X € Z. The load functional on the right of Eq. 5.61 is
precisely the same as the load functional for the original problem of
Eq. 5.35. 1In this special case A = z, so from Eq. 2.72 one obtains the
same design sensitivity form of Eq. 5.55, with the adjoint variable 2

replaced by state variable z; {i.e.,

' n+l m+l ijT i3
¥, = PCOREID ) f Al z,z)V' " ' ldr
1=1 j=1
n+tl m n mtl
+ Y ¥ 14 2(z z)Vij ntar + 1Y f A3 (z z)Vij atddar
i=1 j=1 Fz i=1 j=1 P

(5.62)
where the terms in Eq. 5.62 are defined in Eqs. 5.56 to 5.60.
Consider next the stress constraint on a plate element of Eq. 5.42,
treated as the functional form of Eq. 2.63 that depends on the second
derivatives of the displacement functions. The adjoint equation is,

from Eq. 2.70,

1
- 2 2 T2
a(x,\) = [f 1,3, 2 —-(o * oo 3Txy Gxxoyy)
Q
1
Etoxx _ - Eto - -
F—=w_t+tw )-—T o+ w)
Qa - v)2 XX yy (l—v2) vy XX
6Et1'x - Etoxx - -
- Xy g +——— (v + w )
(1+v) “xy 2(1_‘)2) vy XX
Eto - -
+ .
+ ) (e + W )} M do (5.63)

for all A e Z. With smoothness assumptions, the variational equation of

Eq. 5.63 is equivalent to the formal operator equation



1
1.3 1.3 Y
070 4-"0"0 1 2 2 2 2
D Vw =3 (oxx + oyy + 3Txy O yy)
Eto Eto
j- o ) - —— o+ w )
(1 - V) xx pyy (1 =-v9) pyy Pyx
6EtT Eto Eto
M+ M+ W )+—X-"—2- M+ W
P 2(1-v7) yy Pxx 2(1-v7) XX
1.3
X e QOO
1
1§ 4=1 15, tolo
D VW =0 > xE Ql\ﬁl . i=1,|o|,n+l,j=1,...,m1

(5.64)
where A satisfies the boundary and interface conditions of Eqs. 5.11 to

5.34. By solving Eq. 5.64, one evaluates the final design sensitivity

forms of Eq. 2.72 as in the displacement constraint with the same

arguments discussed there. However, since the constraint functional in

this case depends on the design variable explicitly, its design

derivative is added to the conventional design sensitivity form of

Eq. 5.55. Then, the final design sensitivity form is written, including

the element boundary movement effect of Eq. 4.31, as

1
- = Eag
v 1,2 2 2 2 Txx
¥y = [ 134 2 (Uxx + %y + 31:xy cxxoyy) [ 5 (wxx + w
q. 00 (1-v")
1

Eo 6E T onx

- (v +tw )-—Fy + - (y o+ ow )
(-3 Y (g T -y W

Eo '
_yy -
+ (wxx + vay)]Mde a(su’Q (z,2)



143

nt+l m+l T ntl m T
+1 1 Sy A Goovtallar s 7y g y 53 (z,0vH oldar
i=l j=1 T i=]1 j=1 T
1 2
n mtl T
+ X X fij A;j(zyk)vij nijdl‘
1=1 j=1 ‘T,
T 1
M 2 2 2 2
Mﬁfijv ndrfij(on+oyy+3rxy—oxxoyy)dfz
r 0-0 Q 0-0
M 1
L.
+ [ (2 +5 +32 - o )M ™ ndr (5.65)
1ydg xx yy xy xyy  p
T
M
1530
where the terms in Eq. 5.65 are defined in Eqs. 5.56 to 5.60, Ih and

VM denote the element boundary and its velocity, respectively.

Similarly, for siress constraints on longitudinal beam elements of

Eg. 5.43

2 Vxx b (5.66)

for all A € Z. This is equivalent to the formal operator equation, with

smoothness assumptions,

piighatd - o 13

X e Ql Y i = 1,'Oo,n+1, j = l,ooo,m"']. (5.67)

where A satisfies the boundary and interface conditions of Eqs. 5.11 to

1930 1930
5.34 except at the interface T (precisely 2, ). At the
1,3
interface 92 , different jump condition caused by the line load of

Eq. 5.66 1s made as

13 1.4 +1 ~ 1.1
odo _ todo™ o _ Eh 0J0
Vy - Vy = (Evax)xx ( 2 Mb)xx » Xe (5.68)
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With the adjoint variable obtained by solving Eq. 5.67, one can
write the final design sensitivity form of Eq. 2.72, with design
derivatives of the constraint functional for conventional design

sensitivity as in the case of stress constraint on a plate element, as

' f E ~ ni)sl m'lil f ijT 15
¥, = - - v M dq - a (z A + z, V™Y nrdr
4 1030 2 b i=1 j=1 i Al
92 1
ntl m n o+l T
+ 1018 )\)v:tj nHar+ 77 5z, ovt ot ar
1=1 j=1 rid 1=1 j=1 '
2 (5.69)

where the terms in Eq. 5.69 are defined in Eqs. 5.56 to 5.60.

Finally, for the eigenvalue constraint of Eq. 5.45, the design
derivatives of a simple eigenvalue, given by Eq. 2.78 are obtained. The
conventional design sensitivity, the first bracket of Eq. 2.78, is the
explicit design derivative of the variational eigenvalue equation of
Eq. 5.36 and the shape design sensitivity, the second bracket of
Eq. 2.78, can be obtained by using the unified method for shape design
sensitivity analysis as in static response case and by imposing the
boundary/interface conditions defined in Eqs. 5.11 through 5.34. Then,
the final eigenvalue design sensitivities can be written, using the
notion 8 instead of y for the eigenfunction in this section to avoid the

confusion, as

' ' n+l m+l _ ijT Y
r = aGu,Q(S’S) - (s s) + 121 jzl frijAl(s,s)V nJdr
ntl m T o m+l
+ f 13 -i\;j(sas)vij 1dI‘ + z X f A3 (S S)Vij ijdr
i=1 j=1 r, 1=1 j=1 I'

(5.70)



where a N (s,s) is defined in Eq. 5.56 and

Su,

nt+l mtl

' 2
d (s,8) =V Y [f osld ag
§u,Q PR Y 1

n+l m 2 2
i ~1j s ~dj
+ ) ) [ le(@hY) | s +I-.8s7 ]d
1=1 j=1 g} pii 3%y 9%

n mtl ~t s oag g3l - ay s
+ Y ¥ 7 i.[p(dijhi‘]) .siJ + 14 siJ lda
i=1 j=1 @7 J b

i
- 2 2
A (8,8) = Di{-s" + 8" + 2(s + vs s } ~ zpts
1= { vy xx (yyy xxy) y} tp
at y = ;j y 1 =1m
A (s,8) = 2(ET5. ) 5. - BTS2 - 6752 - f(pdna? + 132)
2" XX X x Xx Xy y
at x = ;;, i=1-n
-— AA A AAZ AA2 AAA2 AAZ
A, (s,s) = 2(Els s - EIs - GJs - dhs™ + Is
3(s,8) = 2(Els ) s -~ EIs| - Gis, - (o »

aty=y,,j=1lmn

The calculation of derivatives of design variable bounds of

Eqs. 5.46 to 5.51 is trivial.
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(5.71)

(5.72)

(5.73)

(5.74)

(5.75)
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5.5 Numerical Results and Diséussion

Numerical calculation of design sensitivities for the constraints
presented in Sections 5.3 and 5.4 for the present model is carried out
using the finite element method. A finite dimensional optimization
method [101] is employed for the present problem, to match the accuracy
of the finite element analysis. Numerical considerations discussed in
Chapter 4 are applied to ;olve this problem.

For structural analysis of this built-up structure, in the first
stage, the stiffness and mass matrices of the plate are constructed by
the non-conforming method discussed in Section 4.2.2. The explicit
forms of stiffness and mass matrices have been published in many papers
such as Refs. 62 and 73. In the present problem, isotropic plates with
Hook's law in the standard form [73] are considered. In the second
stage, the stiffness and mass matrices of longitudinal and transverse
beams with respect to torsion and flexure rigidity are obtained [62] by
transformation from local to global coordinate systems. In the final
stage, the stiffness and mass matrices of truss members are obtained
[62]. The three stages are then assembled to form the global stiffiess
and mass matrices for this problem, imposing interface conditioms.
Similarly, global load vectors are assembled from element load vectors
of each structural component [73].

To solve the static and eigenvalue equations, the symbolic factor-
ization technique presented in Section 4.5 1s used to take advantage of
sparsity of the global stiffness and mass matrices of the built-up
structure. The subspace iteration method [102] is employed for solving

the eigenvalue problem.
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Structural analysis results are checked by using the finite element
program SPAR and show good agreements up to 3 significant digits.

Conventional design sensitivity and shape design sensitivity
calculations are carried out separately, with different finite element
models. The finite element model used for conventional design
sensitivity calculation is shown in Fig. 5.3. A total of 196 finite
elements and 363 degrees of freedom are used to model the truss—beam—
plate built-up structure, including 100 rectangular plate elements,
80 beam elements, and 16 truss elements. The 196 finite elements are
linked to 6 kinds of independent design variables (thickness of plate
elements, height and width of longitudinal beam elements, height and
width of transverse beam elements, and cross—sectional area of truss
members).

The input data used are as follows: elastic modulus E = 3 x 107
psi, Poisson's ratio v = 0.3, the overall dimension L, x Ly = 15 in.
x 15 in., uniform thickness of plate element t = 0.1 in., uniform
height (width) of beam element h = 0.5 in. (d = 0.15 in.), cross-
sectional area (length) of truss element A = 0.1 in. (L = 5.364 in.),
equal spacing of beams Ly = 3 in., and uniformly distributed load
f = 0.1 lb/in.2 on the plate. Mass density for the entire structure
is taken as p = 0.1 lb/in.3 for the eigenvalue problem.

Comparison of conventional design sensitivities with actual changes
after design modifications and predictions for constraints considered in
Section 5.3 are summarized in Table 5.1. A 5% uniform change of all

design variables with fixed cross-sectional areas and lengths of truss
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Figure 5.3 Finite Element Model of a Truss-Beam-Plate
Built-Up Structure for Fixed Domain
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Table 5.1 Conventional Design Sensitivity Comparison for

Truss-Beam-Flate Built-Up Structure

Constraint Wl AY 34 sv/AY

(Z) _

Displace- c 0.4775E-03 -0.8052E-04 -0.907 1E-04 112.7
ment

1 0.1484E 02 -0.7100E 00 -0.6750E 00 95.1

2 0.5829E 02 -0.598CE 01 -0.6780E 01 113.4

3 0.5263E 02 ~-0.5220E 01 -0.5810E 01 111.3

4 0.5256E 02 -0.5760E 01 -0.6320E 01 109.7

5 0.8497E 02 -0.1028E 02 -0.1126E 02 109.5

11 0.5829E 02 -0.5980E 01 -0.6780E 01 113.4

12 0.6780E 02 -0.7870E 01 -0.8630E 01 109.7

13 0.5827E 02 -0.6720E 01 -0.7580E 01 112.8

14 0.5269E 02 ~0.6240E 01 -0.6830E 01 109.5

15 0.7658E 02 -0.9360E 01 -0.1034E 02 110.5

Stress 21 0.5263E 02 -0.5220E 01 -0.5810E 01 111.3

on 22 0.5827E 02 -0.6720E 01 ~0.7580E 01 112.8

plate 23 0.5450E 02 -0.6690E 01 ~-0.7300E 01 109.1

element 24 0.5850E 02 -0.6990E 01 -0.8060E 01 115.3

25 0.6155E 02 -0.7740E 01} -0.8500E 01 109.8

31 0.5256E 02 -0.5760E 01 -0.6320E 01 109.7

32 0.5269E 02 -0.6240E 01 -0.6830E 01 109.5

33 0.5850E 02 -0.6990E 01 -0.8060E 01 115.3

34 0.4697E 02 -0.6030E 01 ~0.6340E 01 105.1

35 0.4621E 02 -0.5880E 01 ~0.6770E 01 115.1

41 0.8497E 02 -0.1028E 02 -0.1126E 02 109.5

42 0.7658E 02 ~-0.9360E 01 -0.1034E 02 110.5

43 0.6155E 02 -0.7740E 01 -0.8500E 01 109.8

44 0.4621E 02 -0.5880E 01 -0.6770E 01 115.1

45 0.3975E 02 =-0.5250E 01 -0.5980E 01 113.9

1 0.2956E 02 -0.364CE 01 ~0.3960E 01 108.8

2 0.1850E 03 -0.2428E 02 -0.2672E 02 110.0

3 0.1200E 03 -0.1608E 02 -0.1764E 02 109.7

Stress 4 0.2041E 03 -0.2552E 02 -0.2792E 02 109.4

on 5 0.3549E 03 -0.4444E 02 -0.4872E 02 109.6

beam 11 0.1656E 02 -0.2360E 01 ~0.2520E 01 106.8

element 12 0.6312E 02 ~-0.7920E 01 -0.8680E 01 109.6

13 0.2192E 02 -0.2400E 01 ~0.2640E 01 110.0

14 0.7964E 02 -0.1088E 02 -0.1192E 02 109.6

15 0.1454E 03 -0.1960E 02 -0.2140E 02 109.2

Eigen- 0.1242E 04 0.2408E 03 0.2199E 03 91.3
value

149



150

members is used. 1In Table 5.1, Tl represents the constraint value at
initial design, AY represents the actual change of constraint value
after design modificatioﬁ, and 48Y represents the sensitivity
prediction. The last column in Table 5.1 denotes the sensitivity
agreement in % between actual change and prediction, defined as

6¥/AY x 100. This définition is also used to Table 5.2. Results in
Table 5.1 show the conventional design sensitivity comparison for one
quarter of the structure, due to symmetry (Fig. 5.3), and show good
agreements of 91-115% for all constraints considered between sensitivity
predictions and constraint reevaluations after design modifications.
The accuracy is is more than adequate for iterative design.

During numerical calculation, it has been shown that the finite
element modél of Fig. 5.3, which was used for conventional design
sensitivity calculation is not suitable for shape design sensitivity
calculation because of the coarse grid. The reason the finer grid for
shape design sensitivity calculations is required is that the shape
design sensitivity forms are defined as an integration over component
boundaries, while conventional design sensitivity forms are defined as
an integration over their domains. Sensitivity evaluation at the
component boundary is a major source of numerical inaccuracy, stemming
from finite element analysis in shape optimization of built-up
structures.

A finer grid finite element model for shape design sensitivity
calculation is shown in Fig. 5.4. Only one quarter of the entire

structure is shown in Fig. 5.4, due to symmetry. A total of 484 finite
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Figure 5.4 Finite Element Model of a Truss-Beam~Plate
Built-Up Structure for Shape Variation
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elements and 1281 degrees of freedom are used to model the structure,
including 400 rectangular plate elements, 80 beam elements and 4 truss
elements. Since conventional design variables are suppressed, the
design variables for shape variation are the positions ;i, i=1,2, of
transverse beams and the positions §j, j=1,2, of longitudinal beams.
During shape variations, it is presumed that the outside boundary is
fixed and the lengths of truss members are constant, that is, the ground
support of the truss moves according to the change of the beam

position. The same input data that are used in conventional design
sensitivity calculation are employed.

Comparison of shape design sensitivities with actual changes after
design modification and predictions by formulas for constraints
congidered in Section 5.3 are summarized in Table 5.2, with 5 % change
in position of each side of the plate components. Due to symmetry of
the finite element model (Fig. 5.4), design sensitivity comparison for
stress constraints of all beam elements and every other plate element in
the upper triangular part, in addition to other constraints considered
in Section 5.3, is listed in Table 5.2. As in the truss—beam built-up
structure of Section 4.6, it is considered that the component boundary
movement affects the element boundary movement with a distributed
velocity, depending on the position, which is proportional to the
velocity of the component boundary, to treat the stress constraint thal
is defined on the plate or beam element. FElement boundary movement
effect in Section 4.4 for sensitivity calculation is applied, in which

the effect 1s shown to be critical in the present problem. As discusszed



Table 5.2 Shape Design Sensitivity Comparison for
Truss—-Beam-Plate Built-Up Structure
Constraint ¥ Ay (34 6{4§Y
Displace- 0.477630E~-03 | 0.639000E-04 0.623050E-04 97.5
ment
Stress 1| 0.491283E 02 | 0.578430E 01 | 0.582313E 01 100.7
on 3| 0.404290E 02 | 0.507150E 01 0.503782E 01 99.3
plate 5| 0.342734E 02 | 0.372610E Ol 0.177060E 02 | 475.2%
element 7 | 0.503317E 02 | 0.447630E 01 0.458831E 01 102.5
9 { 0.621425E 02 | 0.461810E 01 0.471064E 01 102.0
11 0.678413E 02 0.443210E 01 0.432144E 01 97.5
13 | 0.770758E 02 | 0.449140E 01 0.199737E 02 | 444.7%
15| 0.836097E 02 | 0.495960E 01 0.497955E 01 100. 4
17 0.927545E 02 0.584630E 01 0.588408E 01 100.6
19 | 0.102907E 03 | 0.711600E 01 0.737359E 01 103.6
22 0.442618E 02 | 0.537550E 01 0.548079E 01 102.0
24 | 0.330396E 02 | 0.431410E 01 0.637451E 01 147.8%
26 0.426660E 02 0.419350E 01 0.430971E 01 102.8
28 | 0.559439E 02 | 0.465430E 01 0.478683E 01 102.8
30 | 0.635225E 02 | 0.4556S0E 01 0.462942E 01 101.6
32 0.696483E 02 | 0.433590E 01 | -0.271092E 0] - %
34 | 0.779308E 02 | 0.472420E 01 0.474039E 01 100.3
36 0.855177E 02 | 0.538780E 01 0.544000E 01 101.0
38 0.918679E 02 0.632470E 01 0.636981E 01 100.7
40 | 0.104643E 03 | 0.754400E 01 0.740095E 01 98.1
44 0.333483E 02 | 0.433940E 01l 0.476834E 01 109.9%
46 | 0.442882E 02 | 0.420580E 01 0.457845E 01 108.9
48 | 0.524977E 02 | 0.465790E 01 0.472717E 01 101.5
50 0.585271E 02 0.449740E 01 0.471797E 01 104.9
52 0.675386E 02 0.425440E 01 | -0.417631E 01 - %
54 0.754992E 02 0.478350E 01 0.486093E 01 101.6
56 0.790451E 02 0.548130E 01} 0.561322E 01 102.4
58 | 0.812659E 02 | 0.589370E 01 0.581995E 01 98.7
60 | 0.898351E 02 | 0.702590E 01 0.873431E 01 124.3
65 0.384293E 02 0.410100E 01 0.885964E 01 216.0%
67 0.448857E 02 | 0.440390E 01 0.716955E 01 162.8*
69 0.460618E 02 0.419510E 01 0.103754E 01 24.7%
71 0.560286E 02 | 0.402320E. 01 0.854381E 01 212.4%
73 | 0.707552E 02 | 0.433660E 01 0.161278E 02 371.9%
75 | 0.683784E 02 | 0.534000E 01 0.606585E 01 113.6%
77 0.671276E 02 | 0.552770E 01 0.663759E 01 120.1%
79 | 0.650156E 02 | 0.500740E 01 0.508216E 01 101.5%
85 | 0.383067E 02 | 0.418290E 01 0.787511E 01 188.3%
87 0.405797E 02 0.386490E 01 0.742288E 01 192.1%
89 | 0.478572E 02 | 0.365830E 01 0.292377E 01 79.9%
91 | 0.601870E 02 | 0.366820E Ol | -0.216160E 01 - %
93 | 0.678691E 02 | 0.406780E 01 0.122838E 02 302.0%
95 0.641141E 02 | 0.489870E 01 0.520101E 01 106.2%
97 0.627188E 02 | 0.567790E 01 0.602441E 01 106. 1%
99 | 0.644332E 02 | 0.646100E 01 | 0.648722E 01 100.4*
106 | 0.430485E 02 | 0.400810E 01 | 0.368377E 01 91.9
108 | 0.515961E 02 | 0.377600E 01 | 0.362389E 01 96.0
110 | 0.591465E 02 | 0.367630E 01 0.350028E 01 95.2
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Table 5.2 Continued

112
114
116

120
128
130
132
134
136
138
140
149
151
153
155
157
159
169
171
173
175
177
179
190
192
194
196
198
200
212
214
216
218
220
233
235
237
239
253
255
257
259
274
276
278
280
296
298
300
317
319

0.622421E
0.560415E
0.572092E
0.592701E
0.653244E
0.551221E
0.582628E
0.591416E
0.480085E
0.470503E
0.497518E
0.568233E
0.555054E
0.532211E
0.555484E
0.369989E
0.351428E
0.379014E
0.520786E
0.488632E
0.563002E
0.327010CE
0.233698E
0.232539E
0.452829E
0.613298E
0.477629E
0.320130E
0.270660E
0.348251E
0.676872E
0.60171CE
0.533533E
0.552964E
0.657858E
0.814806E
0.827060E
0.900454E
0.100982E
0.820499E
0.795086E
0.900398E
0.101662E
0.673588E
0.612991E
0.648550E
0.753538E
0.456086E
0.425431E
0.493462E
0.297704E
0.278978E

0.352580E
0.412800E
0.481830E
0.544530E
0.629920E
0.377870E
0.362570E
0.278540E
0.382730E
0.454920E
0.501480E
0.578470E
0.365210E
0.291820E
0.199770E
0.406490E
0.469500E
0.517780E
0.347340E
0.212230E
0.986300E
0.319860E
0.438970E
0.498540E
0.225560E
-0.287800E
0.850300E
0.162980E
0.193730E
0.246970E
-0.108820E
-0.525400E
-0.389700E

-0.327000E-01

0.754300E
-0.165530E
-0.150610E
-0.102090E

0.318000E
-0.201040E
~0.190830E
-0.173330E
-0.176000E
~0.176060E
-~0.143850E
=0.119740E
-0.118920E
-0.122760E
-0.898100E
~0.807200E
-0.103000E
-0.811600E

0.475202E
0.387695E
0.468990E
0.499216E
0.866491E
0.369667E
0.358268E
0.112804E
0.399422E
0.430866E
0.460304E
0.579408E
0.360337E
0.279312E
0.762408E
0.399285E
0.441864E
0.509654E
0.339814E
0.190147E
0.507594E
0.293605E
0.420271E
0.481146E
0.184213E
0.887028E
0.620269E
0.133533E
0.212358E
0.146145E
0.435962E
-0.575288E
-0.584231E
0.301678E
-0.214753E
0.137769E
0.119062E
-0.458401E
0.948578E
0.205777E
0.230174E
-0.137223E
-0.244327E
-0.985639E
-0.146266E
-0.104803E
-0.448313E
=0.117749E
-0.744751E
-0.121862E
-0.904167E
~0.101897E

134.8%
93.9
97.3
91.7

137.6
97.8
98.8

405,2%

104.4
94.7
91.8

100.2
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Table 5.2 Continued

337 | 0.218492E 02 | -0.115130E 01 | -0.104685E 0l 90.9
339 | 0.181100E 02 | -0.120480E 01 | -0.139737E 01 116.0
358 | 0.145541E 02 | -0.155840E 01 | -0.164168E Ol 105.3
360 | 0.149387E 02 | -0.151100E 01 | ~0.174274E Ol 115.3
380 | 0.121912E 02 | -0.132390E Ol | -0.149064E 01 112.6
400 | 0.846174E 01 | -0.843500E 00 | -0.938432E 00 111.3

Stress 1| 0.160415E 03 | 0.195140E 02 | 0.194400E 02 99.6
on 2| 0.154422E 03 | 0.188550E 02 | 0.187802E 02 99.6
beam 3| 0.143154E 03 | 0.176080E 02 | 0.174085E 02 98.9
element 4| 0.128072E 03| 0.159270E 02 | 0.156410E 02 98.2
21 | 0.365447E 03 | 0.237300E 02 | 0.236590E 02 99.7
22 | 0.360604E 03 | 0.231890E 02 | 0.231229E 02 99.7
23 | 0.351645E 03| 0.221520E 02 | 0.219809E 02 99.2
24 | 0.340254E 03 | 0.207440E 02 | 0.208615E 02 100.6
25| 0.305855E 03 | 0.191690E 02 | 0.193528E 02 | 10l1.0
26 | 0.240941E 03 | 0.178240E 02 | 0.179433E 02 100.7
27 | 0.172152E 03 | 0.164840E 02 | 0.164213E 02 99.6
28 | 0.979993E 02 | 0.151517E 02 | 0.150810E 02 99.5
29 | 0.175804E 02 | 0.138385E 02 | 0.137983E 02 99.7
30 | -0.693616E 02 | 0.125603E 02 | 0.125568E 02 100.0
31 | -0.162326E 03 | 0.113270E 02 | 0.112652E 02 99.5
32 | -0.259741E 03 | 0.101420E 02 | 0.104919E Q2 103.5
45 | 0.106547E 03 | 0.141790E 02 | 0.139345E 02 98.3
46 | 0.901367E 02 | 0.130483E 02 | 0.131937E 02 | 101.1
47 | 0.721165E 02 | 0.119729E 02 | 0.120849E Q2 100.9
48 | 0.504898E 02 | 0.109112E 02 | 0.110551E 02 | 101.3
49 | 0.245700E 02 | 0.982590E Ol | 0.999583E Ol 101.7
50 | -0.547858E 01 | 0,869336E 01 | 0.885654E 01 101.9
51 {-0.388750E 02 | 0.750090E Ol | 0.747266E Ol 9%9.6
52 | -0.743968E 02 | 0.623580E Ol | 0.604437E 01 96.9
53 | -0.904410E 02 | 0.456870E 01 | 0.438521E 01 96.0
54 | -0.740261E 02 | 0.331260E 01 | 0.350239E 0l 105.7
55 | -0.573423E 02 | 0.219220E Ol | 0.225943E Ol 103.1
56 | -0.423233E 02 | 0.125110E 01 | 0.129765E Ol 103.7
57 | -0.298151E 02 | 0.S510400E 00 | 0.562454E 00 | 110.2
58 | -0.199104E 02 | -0.710000E-02 | 0.118288E 00 -
59 | -0.119784E 02 | -0.265500E 00 | 0.289746E 00 -
60 | —=0.478911E Ol | -0.214640E 00 { 0.235848E 0l -
73 | -0.270690E 03 | 0.842100E 01 | 0.885263E 0l 105.1
74 | -0.207475E 03 | 0.614300E Ol | 0.642310E Ol 104.6
75 | -0.150720E 03 | 0.416000E 01 | 0.422678E 01 101.6
76 | -0.101488E 03 [ 0.253470E 01 | 0.256681lE 0Ol 101.3
77 | -0.606386E 02 | 0.129380E 01 | 0.134459E 0l 103.9
78 | -0.288523E 02 | 0.439900E 00 | 0.602348E 00 136.9
79 { -0.713844E Ol | -0.277000E-01 | 0.630721E 00 -
80 | 0.214113E Ol [ -0.103470E.00 { 0.268880E 01 -

Compli- 0.977450E-03 | 0.110150E-03 | 0.101664E-03 92.3
ance .
Eigen~ 0.121510E 04 [ —0.222000E 02 | 0.211944E 02 95.5

value
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in Section 4.6, to treat a stress constraint that is defined on an
element adjacent to the interface, the argument presented in Section 4.6
is applied to calculate the sensitivity coefficients.

As suggested in previous sections, the non-conforming method for
plate analysis is used, which allows displacement continuity at the
element boundary and nodal points, and slope continuity at the nodal
points between elements. Since the normal slopes at the element
boundaries must be continuous (interface condition), the average values
of normal slopes at the component boundaries (interface) between
components are taken to evaluate shape design sensitivity coefficients.
A numerical test shows that this averaging scheme yields better
gensitivity results. As discussed 15 Section 4.6, to evaluate the third
derivatives of state variable, an extrapolation scheme is used.

Results in Table 5.2 show reasonably good agreement between
sensitivity prediction and constraint reevaluation after design
modification, for all constraints except a few stress constraints
defined on plate and beam elements. Note that some of the sensitivities
for the stress constraints on plate elements adjacent to the interface
marked by * in Table 5.2 are poor (even opposite sign in some
constraints). The reason for poor sensitivity results for these
constraints is that the adjoint load is acting at the interface (element
boundary) and hence the non-continuity of normal slopes (even taking
average of these values) degrades sensitivity accuracy. However, for
stress constraints defined on beam elements adjacent to the interface,

since the slope 1s continuous at the nodal points between components,
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good sensitivity agreement is obtained, as shown in Table 5.2. For a
few stress constraints on plate and beam elements near free boundary,
since the amount of change of constraint values are relatively small,
the sensitivity agreement is poor, due to approximation error.
Numerical tests show that these poor sensitivities can be improved by a
larger perturbation of design, within the range of linear approxi-
tion. To improve the poor shape design sensitivity agreement for the
stress constraints defined on plate and beam elements adjacent to
interfaces or free boundaries, which is one of the most numerically
difficult tasks in built-up structure optimization, a conforming method
for plate analysis, as discussed in Section 4.2.2, or the boundary
element method for treating elements close to component boundaries is
suggested.

Once acceptable design sensitivity coefficients are obtained, one
can directly utilize a nonlinear programming method to obtain an optimum
design, without any appreciable difficulty. With the design sensitivity
coefficients obtained, the linearization method [105] is applied to
obtain the optimum distribution of design variables for the present
problem, with a fixed domain (Fig. 5.3). Minimum weight design of the
entire structure subject to displacement, stress on plate and beam
elements, and natural frequency constraints is considered. The initial

Y

design (by) is selected as tg = 0.1 in., d0 = dO = 0.15 in.,
Ko = hy = 0.5 in., and Ay = 0.1 in., with the lower and upper bound
bz = 0.8 by and bu = l.2by, respectively, with ratio

R = bu/b2 = 1.5. Allowable bounds for each constraint are given
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as: z® = 0.0006 in., o‘; = 100 psi, o: = 400 psi, and ¢ = 800
(rad/sec)z.

The solution in Table 5.3 shows the optimum design for the present
problem, where one quarter of design variables appear, due to symmetry.
The cost is reduced from 41.68 to 32.40, which is 22.3% reduction, while
the L-2 norm of the direction vector as a convergence criteria, is
reduced from 34.69 to 0.791 x 1073 after 17 iterations.

Reviewing the history of iterative design, the cross-sectional area
of truss member and the beam width tend to approach the lower bounds in
the early iterations. When the beam height 1is significantly dominant to
the plate thickness, the plate thickness tends to go to the lower bound
in the early stage, in which the optimum solution is obtained by
controlling the beam height. For this case, the outer beams that are
close to the free edges have the characteristic of a build up In beam
height, particularly conspicuous around the middle portion of the beam.

Also, one can notice that whenever the ratio of upper and lower
bounds of design variables becomes smaller, the smoother distribution of
design variables is expected. However, if the beam height is not
significantly large compared to plate thickness, the optimum design may

be obtained by controlling both plate thickness and beam height.




Table 5.3 Optimal Design Results for Truss-Beam-Plate
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Built-Up Structure

Initial Final Initial Final
(1) | 1.0000 0.80008 (1) | 0.1500 0.12000
2) | - 0.80009 (2) | - 0.12000
3 | - 0.80010 3| - 0.12000
%) | - 0.80010 (4) 0.12001
(5) | - 0.80010 Beam (5) 0.12001
(11) 0.80009 | width [(11) 0.12000
(12) 0.80009 (12) 0.12000
(13) 0.80009 (13| - 0.12000
(14) 0.80009 (14) | - 0.12000
(15) 0.80009 (15) | 0.1500 0.12000
(21) 0.80010 (1) | 0.5000 0.40005
Plate | (22) 0.80009 (2) | - 0.43199
thick- | (23) 0.80009 3| - 0.40005
ness (24) 0.80009 (4) 0.50015
(x 0.1)| (25) 0.80008 | Beam (5) 0.59996
(31) 0.80010 | height j(11) 0.40005
(32) 0.80009 (12) 0.40004
(33) 0.80009 (13) | - 0.40004
(34) 0.80010 (14) | - 0.40008
(35) 0.80005 (15) | 0.5000 0.40986
41) | - 0.80010 (1) 1.0000 0.80009
42) | - 0.80009 Truss | (2)| - 0.80009
43) | - 0.80008 area | (3)| - 0.80009
(46) | - 0.80005 (x 0.1)] (4)| 1.0000 0.80009
(45) { 1.0000 0.80009 :
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

Methods of design sensitivity analysis and optimization of built-up
structures have been studied using distributed parameter structural
theory. The studies clearly demonstrate the advantage of the
variational formulation of boundary-value problems in design sensitivity
analysis. The material derivative idea from continuum mechanics is
employed for shape variation analysis. A unified method of shape design
sensitivity analysis is develdped, in which the shape design sensitivity
coefficients are easily obtained by imposing boundary and interface
conditions in built-up structure problems, without caérying out the
complete procedure of shape design sensitivity analysis. An iterative
optimization algorithm is then utilized to obtain an optimum solution.
This procedure is applied for optimal design of a truss-beam-plate
built-up structure, as a numerical feasibility study. 1In view of the
theory and results presented, there should be no fundamental
difficulties in applying the procedure to other classes of built-up
structural optimization problems.

Numerical experimentation with the procedure developed shows that
the inherent approximation error caused by using distributed parameter
structural theory instead of matrix/finite element method for design
sensitivity calculation is not significant, but that the choice of

numerical methods for calculation, especially the finite element method,
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plays a crucial role in the procedure's success. This is mainly due to
the fact that one obtains relatively poor design sensitivity results for
stress constraints near the component boundary (interface) where
interface or boundary conditions are imposed.

Further development and application of the present design method
for built-up structure optimization may be envisioned in several
fields. The present study on optimization of relatively simple geometry
under general constraints clearly indicates the feasibility of extending
the present optimal design problem for more complex built-up structures,
including curved beam and shell components, where the configurations of
combined structures are more complex and constraints and loading

conditions are more varied.
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